Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Roles of Fast-Cyclotron and Alfvén-Cyclotron Waves for the Multi-Ion Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave–particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfvén waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. In this paper, we assume that i) low-frequency Alfvén and fast waves, emanating from the solar surface, have the same spectral shape and the same amplitude of power spectral density (PSD); ii) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; iii) kinetic wave–particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha–proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfvén-cyclotron waves. For alpha cyclotron resonance, an oblique fast-cyclotron wave has a larger left-handed electric field fluctuation, a smaller wave number, a larger local wave amplitude, and a greater energization capability than a corresponding Alfvén-cyclotron wave at the same wave propagation angle θ, particularly at 80<θ<90. When Alfvén-cyclotron or fast-cyclotron waves are present, alpha particles are the chief energy recipient. The transition of preferential energization from alpha particles to protons may be self-modulated by a differential speed and a temperature anisotropy of alpha particles via the self-consistently evolving wave–particle interaction. Therefore, fast-cyclotron waves, as a result of linear mode coupling, constitute a potentially important mechanism for preferential energization of minor ions in the main acceleration region of the solar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Axford, W.I., McKenzie, J.F.: 1992, The origin of high speed solar wind streams. In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven, COSPAR Colloq 3, Pergamon Press, Elmsford, 1 – 5.

    Google Scholar 

  • Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H.: 2005, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002.

    Article  ADS  Google Scholar 

  • Barnes, A., Hollweg, J.V.: 1974, Large-amplitude hydromagnetic waves. J. Geophys. Res. 79, 2302 – 2318.

    Article  ADS  Google Scholar 

  • Chandran, B.D.: 2008, Weakly turbulent magnetohydrodynamic waves in compressible low-β plasmas. Phys. Rev. Lett. 101, 269903.

    Article  ADS  Google Scholar 

  • Coles, W.A.: 1978, Interplanetary scintillation. Space Sci. Rev. 21, 411 – 425.

    Article  ADS  Google Scholar 

  • Cranmer, S.R., van Ballegooijen, A.A.: 2003, Alfvénic turbulence in the extended solar corona: Kinetic effects and proton heating. Astrophys. J. 594, 573 – 591.

    Article  ADS  Google Scholar 

  • Cranmer, S.R., Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., et al.: 1999, An empirical model of a polar coronal hole at solar minimum. Astrophys. J. 511, 481 – 501.

    Article  ADS  Google Scholar 

  • Dasso, S., Milano, L.J., Matthaeus, W.H., Smith, C.W.: 2005, Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. Lett. 635, L181 – L184.

    Article  ADS  Google Scholar 

  • Gary, S.P.: 1993, Theory of Space Plasma Microinstabilities, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gary, S.P., Borovsky, J.E.: 2004, Alfvén-cyclotron fluctuations: linear Vlasov theory. J. Geophys. Res. 109, A06105.

    Article  ADS  Google Scholar 

  • Gary, S.P., Nishimura, K.: 2004, Kinetic Alfvén waves: linear theory and a particle-in-cell simulation. J. Geophys. Res. 109, A02109.

    Article  Google Scholar 

  • Gary, S.P., Smith, W.: 2009, Short-wavelength turbulence in the solar wind: linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res. 114, A12105.

    Article  ADS  Google Scholar 

  • Gogoberidze, G., Mahajan, S.M., Poedts, S.: 2009, Weak and strong regimes of incompressible magnetohydrodynamic turbulence. Phys. Plasmas 16, 072304.

    Article  ADS  Google Scholar 

  • Goldreich, P., Sridhar, S.: 1995, Toward a theory of interstellar turbulence. II: Strong Alfvén turbulence. Astrophys. J. 438, 763 – 775.

    Article  ADS  Google Scholar 

  • Goldstein, B.E., Neugebauer, M., Zhang, L.D., Gary, S.P.: 2000, Observed constraint on proton–proton relative velocities in the solar wind. Geophys. Res. Lett. 27, 53 – 56.

    Article  ADS  Google Scholar 

  • He, J., Marsch, E., Tu, C., Yao, S., Tian, H.: 2011, Possible evidence of Alfvén-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence. Astrophys. J. 731, 85.

    Article  ADS  Google Scholar 

  • Hollweg, J.V., Isenberg, P.A.: 2002, Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147.

    Article  Google Scholar 

  • Horbury, T.S., Forman, M.A., Oughton, S.: 2005, Spacecraft observations of solar wind turbulence: an overview. J. Plasma Phys. Control. Fusion 47, B703.

    Article  Google Scholar 

  • Isenberg, P.A.: 2001, The kinetic shell model of coronal heating and acceleration by ion cyclotron waves 2: Inward and outward propagating waves. J. Geophys. Res. 106, 29249 – 29260.

    Article  ADS  Google Scholar 

  • Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Cranmer, S.R., et al.: 1998, UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. Astrophys. J. 501, L127 – L131.

    Article  ADS  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W.H., Wong, H.K.: 1998, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 – 4787.

    Article  ADS  Google Scholar 

  • Li, X., Habbal, S.R.: 2001, Damping of fast and ion cyclotron oblique waves in the multi-ion fast solar wind. J. Geophys. Res. 106, 10669 – 10680.

    Article  ADS  Google Scholar 

  • Li, X., Habbal, S.R., Kohl, J.L., Noci, G.C.: 1998, The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona. Astrophys. J. 501, L133 – L137.

    Article  ADS  Google Scholar 

  • Li, X., Lu, Q., Chen, Y., Li, B., Xia, L.: 2010, A kinetic Alfvén wave and the proton distribution function in the fast solar wind. Astrophys. J. Lett. 719, L190 – L193.

    Article  ADS  Google Scholar 

  • MacBride, B.T., Smith, C.W., Vasquez, B.J.: 2010, Inertial-range anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations. J. Geophys. Res. 115, A07105.

    Article  ADS  Google Scholar 

  • Markovskii, S.A., Hollweg, J.V.: 2004, Intermittent heating of the solar corona by heat flux-generated ion cyclotron waves. Astrophys. J. 609, 1112 – 1122.

    Article  ADS  Google Scholar 

  • Markovskii, S.A., Vasquez, B.J., Chandran, B.D.G.: 2010, Perpendicular proton heating due to energy cascade of fast magnetosonic waves in the solar corona. Astrophys. J. 709, 1003 – 1008.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.Y.: 2001, Heating and acceleration of coronal ions interacting with plasma waves through cyclotron and Landau resonance. J. Geophys. Res. 106, 227 – 238.

    Article  ADS  Google Scholar 

  • Marsch, E., Rosenbauer, H., Schwenn, R., Muehlhaeuser, K.H., Neubauer, F.M.: 1982, Solar wind helium ions – observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 35 – 51.

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Goldstein, M.L., Roberts, D.A.: 1990, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673 – 20683.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C.W.: 1962, Solar plasma experiment. Science 138, 1095 – 1097.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Goldstein, B.E., Smith, E.J., Feldman, W.C.: 1996, Ulysses observations of differential alpha–proton streaming in the solar wind. J. Geophys. Res. 101, 17047 – 17055.

    Article  ADS  Google Scholar 

  • Osmane, A., Hamza, A.M., Meziane, K.: 2010, On the generation of proton beams in fast solar wind in the presence of obliquely propagating Alfvén waves. J. Geophys. Res. 115, A05101.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 – 676.

    Article  ADS  Google Scholar 

  • Perez, J.C., Boldyrev, S.: 2008, On weak and strong magnetohydrodynamic turbulence. Astrophys. J. Lett. 672, L61 – L64.

    Article  ADS  Google Scholar 

  • Podesta, J.J., Borovsky, J.E., Gary, S.P.: 2010, A kinetic Alfvén wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU. Astrophys. J. 712, 685.

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Robert, P., Khotyaintsev, Y.V.: 2009, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102.

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: 2010, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101.

    Article  ADS  Google Scholar 

  • Smith, C.W., Mullan, D.J., Ness, N.F., Skoug, R.M., Steinberg, J.: 2001, Day the solar wind almost disappeared: magnetic field fluctuations wave refraction and dissipation. J. Geophys. Res. 106, 18625 – 18634.

    Article  ADS  Google Scholar 

  • Stix, T.H.: 1992, Waves in Plasmas, Springer, Berlin, 237 – 304.

    Google Scholar 

  • Wicks, R.T., Horbury, T.S., Chen, C.H.K., Schekochihin, A.A.: 2011, Anisotropy of imbalanced Alfvén turbulence in fast solar wind. Phys. Rev. Lett. 106, 045001.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Science & Technology Facilities Council (STFC) to the Aberystwyth University, UK. We are very grateful to the anonymous referee for his/her thoughtful and constructive comments, which have greatly improved the quality of this paper. We also sincerely thank Professor Takashi Sakurai and thank Mr. Jeff Smith for polishing the language of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, M., Li, X. Roles of Fast-Cyclotron and Alfvén-Cyclotron Waves for the Multi-Ion Solar Wind. Sol Phys 279, 231–251 (2012). https://doi.org/10.1007/s11207-012-9973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9973-0

Keywords