Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Prominence and Filament Eruptions Observed by the Solar Dynamics Observatory: Statistical Properties, Kinematics, and Online Catalog

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a statistical study of prominence and filament eruptions observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Several properties are recorded for 904 events that were culled from the Heliophysics Event Knowledgebase (HEK) and incorporated into an online catalog for general use. These characteristics include the filament and eruption type, eruption symmetry and direction, apparent twisting and writhing motions, and the presence of vertical threads and coronal cavities. Associated flares and white-light coronal mass ejections (CME) are also recorded. Total rates are given for each property along with how they differ among filament types. We also examine the kinematics of 106 limb events to characterize the distinct slow- and fast-rise phases often exhibited by filament eruptions. The average fast-rise onset height, slow-rise duration, slow-rise velocity, maximum field-of-view (FOV) velocity, and maximum FOV acceleration are 83 Mm, 4.4 hours, 2.1 km s−1, 106 km s−1, and 111 m s−2, respectively. All parameters exhibit lognormal probability distributions similar to that of CME speeds. A positive correlation between latitude and fast-rise onset height is found, which we attribute to a corresponding negative correlation in the average vertical magnetic field gradient, or decay index, estimated from potential field source surface (PFSS) extrapolations. We also find the decay index at the fast-rise onset point to be 1.1 on average, consistent with the critical instability threshold theorized for straight current channels. Finally, we explore relationships between the derived kinematics properties and apparent twisting motions. We find that events with evident twist have significantly faster CME speeds and significantly lower fast-rise onset heights, suggesting relationships between these values and flux rope helicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Notes

  1. Heliophysics Event Knowledgebase: http://www.lmsal.com/hek/ .

  2. Helioviewer: http://helioviewer.org/ .

  3. SDO Filament Eruption Catalog: http://aia.cfa.harvard.edu/filament/ .

  4. Hinode/XRT Flare Catalog: http://xrt.cfa.harvard.edu/flare_catalog/ .

  5. Hinode and SDO Sigmoid Catalog: http://aia.cfa.harvard.edu/sigmoid/ .

  6. SolarSoft Latest Events: http://www.lmsal.com/solarsoft/latest_events/ .

  7. CACTus CME catalog: http://sidc.oma.be/cactus/ .

  8. SolarSoft IDL FORWARD Package: http://www.hao.ucar.edu/FORWARD/ .

  9. SolarSoft IDL PFSS Package: http://www.lmsal.com/~derosa/pfsspack/ .

References

  • Alexander, D., Metcalf, T.R., Nitta, N.V.: 2002, Fast acceleration of a CME-related X-ray structure in the low solar corona. Geophys. Res. Lett. 29, 1403. DOI . ADS .

    ADS  Google Scholar 

  • Amari, T., Aly, J.-J., Mikic, Z., Linker, J.: 2010, Coronal mass ejection initiation: On the nature of the flux cancellation model. Astrophys. J. Lett. 717, L26. DOI . ADS .

    ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI . ADS .

    ADS  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314. DOI . ADS .

    ADS  Google Scholar 

  • Bateman, G.: 1978, MHD Instabilities, MIT Press, Cambridge. ADS .

    Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Muhr, N., Kienreich, I., Utz, D., Vršnak, B.: 2011, Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191. DOI . ADS .

    ADS  Google Scholar 

  • Berger, T., Testa, P., Hillier, A., Boerner, P., Low, B.C., Shibata, K., Schrijver, C., Tarbell, T., Title, A.: 2011, Magneto-thermal convection in solar prominences. Nature 472, 197. DOI . ADS .

    ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI . ADS .

    ADS  Google Scholar 

  • Canny, J.: 1986, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679. DOI .

    Google Scholar 

  • Chae, J.: 2010, Dynamics of vertical threads and descending knots in a hedgerow prominence. Astrophys. J. 714, 618. DOI . ADS .

    ADS  Google Scholar 

  • Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524. DOI . ADS .

    ADS  Google Scholar 

  • Chen, B., Bastian, T.S., Gary, D.E.: 2014, Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection. Astrophys. J. 794, 149. DOI . ADS .

    ADS  Google Scholar 

  • Cheng, X., Zhang, J., Ding, M.D., Olmedo, O., Sun, X.D., Guo, Y., Liu, Y.: 2013, Investigating two successive flux rope eruptions in a solar active region. Astrophys. J. Lett. 769, L25. DOI . ADS .

    ADS  Google Scholar 

  • Chifor, C., Mason, H.E., Tripathi, D., Isobe, H., Asai, A.: 2006, The early phases of a solar prominence eruption and associated flare: A multi-wavelength analysis. Astron. Astrophys. 458, 965. DOI . ADS .

    ADS  Google Scholar 

  • Chifu, I., Inhester, B., Mierla, M., Chifu, V., Wiegelmann, T.: 2012, First 4D reconstruction of an eruptive prominence using three simultaneous view directions. Solar Phys. 281, 121. DOI . ADS .

    ADS  Google Scholar 

  • D’Agostino, R.B., Stephens, M.A. (eds.): 1986, Goodness-of-Fit Techniques, Dekker, New York. 0-824-77487-6.

    Google Scholar 

  • Démoulin, P., Aulanier, G.: 2010, Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys. J. 718, 1388. DOI . ADS .

    ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1. DOI . ADS .

    ADS  Google Scholar 

  • Engvold, O.: 2015, Description and classification of prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 31. DOI . ADS .

    Google Scholar 

  • Fan, Y.: 2012, Thermal signatures of tether-cutting reconnections in pre-eruption coronal flux ropes: Hot central voids in coronal cavities. Astrophys. J. 758, 60. DOI . ADS .

    ADS  Google Scholar 

  • Fan, Y.: 2015, MHD equilibria and triggers for prominence eruption. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 297. DOI . ADS .

    Google Scholar 

  • Fan, Y., Gibson, S.E.: 2007, Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys. J. 668, 1232. DOI . ADS .

    ADS  Google Scholar 

  • Filippov, B.P.: 2013, Height of a solar filament before eruption. Astron. Rep. 57, 778. DOI . ADS .

    ADS  Google Scholar 

  • Filippov, B.P., Den, O.G.: 2000, Prominence height and vertical gradient in magnetic field. Astron. Lett. 26, 322. DOI . ADS .

    ADS  Google Scholar 

  • Filippov, B.P., Den, O.G.: 2001, A critical height of quiescent prominences before eruption. J. Geophys. Res. 106, 25177. DOI . ADS .

    ADS  Google Scholar 

  • Forland, B.C., Gibson, S.E., Dove, J.B., Rachmeler, L.A., Fan, Y.: 2013, Coronal cavity survey: Morphological clues to eruptive magnetic topologies. Solar Phys. 288, 603. DOI . ADS .

    ADS  Google Scholar 

  • Foullon, C., Verwichte, E.: 2006, Automated detection of EUV prominences. Solar Phys. 234, 135. DOI . ADS .

    ADS  Google Scholar 

  • Fuller, J., Gibson, S.E.: 2009, A survey of coronal cavity density profiles. Astrophys. J. 700, 1205. DOI . ADS .

    ADS  Google Scholar 

  • Gibson, S.: 2015, Coronal cavities: Observations and implications for the magnetic environment of prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 323. DOI . ADS .

    Google Scholar 

  • Gibson, S.E., Fan, Y.: 2006, Coronal prominence structure and dynamics: A magnetic flux rope interpretation. J. Geophys. Res. 111(A10), 12103. DOI . ADS .

    Google Scholar 

  • Gibson, S.E., Kucera, T.A., Casini, R., Dove, J., Forland, B., Judge, P., Rachmeler, L.: 2014, FORWARD: Forward modeling of coronal observables, Astrophysics Source Code Library. ADS .

  • Gilbert, H.R., Alexander, D., Liu, R.: 2007, Filament kinking and its implications for eruption and re-formation. Solar Phys. 245, 287. DOI . ADS .

    ADS  Google Scholar 

  • Gilbert, H.R., Holzer, T.E., Burkepile, J.T., Hundhausen, A.J.: 2000, Active and eruptive prominences and their relationship to coronal mass ejections. Astrophys. J. 537, 503. DOI . ADS .

    ADS  Google Scholar 

  • Goff, C.P., van Driel-Gesztelyi, L., Harra, L.K., Matthews, S.A., Mandrini, C.H.: 2005, A slow coronal mass ejection with rising X-ray source. Astron. Astrophys. 434, 761. DOI . ADS .

    ADS  Google Scholar 

  • Gopalswamy, N.: 2015, The dynamics of eruptive prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 381. DOI . ADS .

    Google Scholar 

  • Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. Astrophys. J. 586, 562. DOI . ADS .

    ADS  Google Scholar 

  • Gui, B., Shen, C., Wang, Y., Ye, P., Liu, J., Wang, S., Zhao, X.: 2011, Quantitative analysis of CME deflections in the corona. Solar Phys. 271, 111. DOI . ADS .

    ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    ADS  Google Scholar 

  • Hundhausen, A.: 1999, Coronal mass ejections. In: Strong, K.T., Saba, J.L.R., Haisch, B.M., Schmelz, J.T. (eds.) The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, 143. ADS .

    Google Scholar 

  • Hurlburt, N., Cheung, M., Schrijver, C., Chang, L., Freeland, S., Green, S., Heck, C., Jaffey, A., Kobashi, A., Schiff, D., Serafin, J., Seguin, R., Slater, G., Somani, A., Timmons, R.: 2012, Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. Solar Phys. 275, 67. DOI . ADS .

    ADS  Google Scholar 

  • Isobe, H., Tripathi, D., Asai, A., Jain, R.: 2007, Large-amplitude oscillation of an erupting filament as seen in EUV, Hα, and microwave observations. Solar Phys. 246, 89. DOI . ADS .

    ADS  Google Scholar 

  • Joshi, V., Srivastava, N.: 2007, On the study of kinematics of eruptive quiescent prominences observed in He 304 Å. Bull. Astron. Soc. India 35, 447. ADS .

    MathSciNet  ADS  Google Scholar 

  • Joshi, A.D., Srivastava, N.: 2011, Kinematics of two eruptive prominences observed by EUVI/STEREO. Astrophys. J. 730, 104. DOI . ADS .

    ADS  Google Scholar 

  • Kay, C., Opher, M., Evans, R.M.: 2014, Global trends of CME deflections based on CME and solar parameters. ArXiv e-prints. ADS .

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI . ADS .

    ADS  Google Scholar 

  • Koleva, K., Madjarska, M.S., Duchlev, P., Schrijver, C.J., Vial, J.-C., Buchlin, E., Dechev, M.: 2012, Kinematics and helicity evolution of a loop-like eruptive prominence. Astron. Astrophys. 540, A127. DOI . ADS .

    ADS  Google Scholar 

  • Kundu, M.R., White, S.M., Garaimov, V.I., Manoharan, P.K., Subramanian, P., Ananthakrishnan, S., Janardhan, P.: 2004, Radio observations of rapid acceleration in a slow filament eruption/fast coronal mass ejection event. Astrophys. J. 607, 530. DOI . ADS .

    ADS  Google Scholar 

  • Labrosse, N., Schmieder, B., Heinzel, P., Watanabe, T.: 2011, EUV lines observed with EIS/Hinode in a solar prominence. Astron. Astrophys. 531, A69. DOI . ADS .

    ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    ADS  Google Scholar 

  • Leroy, J.L., Bommier, V., Sahal-Brechot, S.: 1984, New data on the magnetic structure of quiescent prominences. Astron. Astrophys. 131, 33. ADS .

    ADS  Google Scholar 

  • Limpert, E., Stahel, W.A., Abbt, M.: 2001, Log-normal distributions across the sciences: Keys and clues. Bioscience 51(5), 341. http://www.stat.math.ethz.ch/~stahel/lognormal/bioscience.pdf .

    Google Scholar 

  • Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375. DOI . ADS .

    ADS  Google Scholar 

  • Lin, Y., Martin, S.F., Engvold, O.: 2008, Filament substructures and their interrelation. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astron. Soc. Pac. CS-383, 235. ADS .

    Google Scholar 

  • Liu, Y.: 2008, Magnetic field overlying solar eruption regions and kink and torus instabilities. Astrophys. J. Lett. 679, L151. DOI . ADS .

    ADS  Google Scholar 

  • Liu, R., Alexander, D., Gilbert, H.R.: 2009, Asymmetric eruptive filaments. Astrophys. J. 691, 1079. DOI . ADS .

    ADS  Google Scholar 

  • Liu, K., Wang, Y., Shen, C., Wang, S.: 2012a, Critical height for the destabilization of solar prominences: Statistical results from STEREO observations. Astrophys. J. 744, 168. DOI . ADS .

    ADS  Google Scholar 

  • Liu, R., Kliem, B., Török, T., Liu, C., Titov, V.S., Lionello, R., Linker, J.A., Wang, H.: 2012b, Slow rise and partial eruption of a double-Decker filament. I. Observations and interpretation. Astrophys. J. 756, 59. DOI . ADS .

    ADS  Google Scholar 

  • Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys. J. 443, 818. DOI . ADS .

    ADS  Google Scholar 

  • Low, B.C., Berger, T., Casini, R., Liu, W.: 2012a, The hydromagnetic interior of a solar quiescent prominence. I. Coupling between force balance and steady energy transport. Astrophys. J. 755, 34. DOI . ADS .

    ADS  Google Scholar 

  • Low, B.C., Liu, W., Berger, T., Casini, R.: 2012b, The hydromagnetic interior of a solar quiescent prominence. II. Magnetic discontinuities and cross-field mass transport. Astrophys. J. 757, 21. DOI . ADS .

    ADS  Google Scholar 

  • Lugaz, N.: 2015, Eruptive prominences and their impact on the Earth and our life. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 433. DOI . ADS .

    Google Scholar 

  • Mackay, D.H.: 2015, Formation and large-scale patterns of filament channels and filaments. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 355. DOI . ADS .

    Google Scholar 

  • Mackay, D.H., Gaizauskas, V., Yeates, A.R.: 2008, Where do solar filaments form? Consequences for theoretical models. Solar Phys. 248, 51. DOI . ADS .

    ADS  Google Scholar 

  • Makarov, V.I.: 1994, Global magnetic activity in 22-year solar cycles. Solar Phys. 150, 359. DOI . ADS .

    ADS  Google Scholar 

  • Makarov, V.I., Tavastsherna, K.S., Davydova, E.I., Sivaraman, K.R.: 1992, Variations of prominence heights in high latitude global magnetic neutral lines. Bull. Soln. Dannye Akad. Nauk SSSR 3, 90. ADS .

    ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Roša, D.: 2009, Relative kinematics of the leading edge and the prominence in coronal mass ejections. Solar Phys. 260, 177. DOI . ADS .

    ADS  Google Scholar 

  • Markwardt, C.B.: 2009, Non-linear least-squares fitting in IDL with MPFIT. In: Bohlender, D.A., Durand, D., Dowler, P. (eds.) Astronomical Data Analysis Software and Systems XVIII, Astron. Soc. Pac. CS-411, 251. ADS .

    Google Scholar 

  • Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883. DOI . ADS .

    ADS  Google Scholar 

  • Masson, S., McCauley, P., Golub, L., Reeves, K.K., DeLuca, E.E.: 2014, Dynamics of the transition corona. Astrophys. J. 787, 145. DOI . ADS .

    ADS  Google Scholar 

  • McKillop, S., Miralles, M.P., Murphy, N.A., McCauley, P.: 2014, Rolling motions during solar prominence eruptions in asymmetric magnetic environments. In: Am. Astron. Soc. Meeting Abstracts #224, #218.30. ADS .

    Google Scholar 

  • Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.: 2002, A statistical study of two classes of coronal mass ejections. Astrophys. J. 581, 694. DOI . ADS .

    ADS  Google Scholar 

  • Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201. DOI . ADS .

    ADS  Google Scholar 

  • Murphy, N.A., Miralles, M.P., Pope, C.L., Raymond, J.C., Winter, H.D., Reeves, K.K., Seaton, D.B., van Ballegooijen, A.A., Lin, J.: 2012, Asymmetric magnetic reconnection in solar flare and coronal mass ejection current sheets. Astrophys. J. 751, 56. DOI . ADS .

    ADS  Google Scholar 

  • Paletou, F., López Ariste, A., Bommier, V., Semel, M.: 2001, Full-Stokes spectropolarimetry of solar prominences. Astron. Astrophys. 375, L39. DOI . ADS .

    ADS  Google Scholar 

  • Panasenco, O., Martin, S., Joshi, A.D., Srivastava, N.: 2011, Rolling motion in erupting prominences observed by STEREO. J. Atmos. Solar-Terr. Phys. 73, 1129. DOI . ADS .

    ADS  Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M., Vourlidas, A.: 2013, Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Phys. 287, 391. DOI . ADS .

    ADS  Google Scholar 

  • Parenti, S.: 2014, Solar prominences: Observations. Living Rev. Solar Phys. 11, 1. DOI . ADS .

    ADS  Google Scholar 

  • Park, S.-H., Cho, K.-S., Bong, S.-C., Kumar, P., Chae, J., Liu, R., Wang, H.: 2012, The occurrence and speed of CMEs related to two characteristic evolution patterns of helicity injection in their solar source regions. Astrophys. J. 750, 48. DOI . ADS .

    ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    ADS  Google Scholar 

  • Reeves, K.K., McCauley, P.I., Tian, H.: 2015, Direct observations of magnetic reconnection outflow and CME triggering in a small erupting solar prominence. Astrophys. J. in press.

  • Reeves, K.K., Linker, J.A., Mikić, Z., Forbes, T.G.: 2010, Current sheet energetics, flare emissions, and energy partition in a simulated solar eruption. Astrophys. J. 721, 1547. DOI . ADS .

    ADS  Google Scholar 

  • Reeves, K.K., Gibson, S.E., Kucera, T.A., Hudson, H.S., Kano, R.: 2012, Thermal properties of a solar coronal cavity observed with the X-ray telescope on Hinode. Astrophys. J. 746, 146. DOI . ADS .

    ADS  Google Scholar 

  • Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys. 533, L1. DOI . ADS .

    ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI . ADS .

    ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1222. DOI . ADS .

    ADS  Google Scholar 

  • Romano, P., Contarino, L., Zuccarello, F.: 2003, Eruption of a helically twisted prominence. Solar Phys. 214, 313. DOI . ADS .

    ADS  Google Scholar 

  • Savcheva, A.S., McKillop, S.C., McCauley, P.I., Hanson, E.M., DeLuca, E.E.: 2014, A new sigmoid catalog from Hinode and the Solar Dynamics Observatory: Statistical properties and evolutionary histories. Solar Phys. 289, 3297. DOI . ADS .

    ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    ADS  Google Scholar 

  • Scholz, F.W., Stephens, M.A.: 1987, K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 82(399), 918.

    MathSciNet  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .

    ADS  Google Scholar 

  • Schrijver, C.J., Elmore, C., Kliem, B., Török, T., Title, A.M.: 2008, Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys. J. 674, 586. DOI . ADS .

    ADS  Google Scholar 

  • Sheeley, N.R. Jr., Michels, D.J., Howard, R.A., Koomen, M.J.: 1980, Initial observations with the SOLWIND coronagraph. Astrophys. J. Lett. 237, L99. DOI . ADS .

    ADS  Google Scholar 

  • Simnett, G.M.: 2000, The relationship between prominence eruptions and coronal mass ejections. J. Atmos. Solar-Terr. Phys. 62, 1479. DOI . ADS .

    ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L.: 2004, Evidence for gradual external reconnection before explosive eruption of a solar filament. Astrophys. J. 602, 1024. DOI . ADS .

    ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L.: 2005, Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J. 630, 1148. DOI . ADS .

    ADS  Google Scholar 

  • Sterling, A.C., Harra, L.K., Moore, R.L.: 2007, New evidence for the role of emerging flux in a solar filament’s slow rise preceding its CME-producing fast eruption. Astrophys. J. 669, 1359. DOI . ADS .

    ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L., Freeland, S.L.: 2011, Insights into filament eruption onset from solar dynamics observatory observations. Astrophys. J. Lett. 731, L3. DOI . ADS .

    ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L., Berger, T.E., Bobra, M., Davis, J.M., Jibben, P., Kano, R., Lundquist, L.L., Myers, D., Narukage, N., Sakao, T., Shibasaki, K., Shine, R.A., Tarbell, T.D., Weber, M.: 2007, Hinode observations of the onset stage of a solar filament eruption. Publ. Astron. Soc. Japan 59, 823. DOI . ADS .

    ADS  Google Scholar 

  • Su, Y., van Ballegooijen, A.: 2012, Observations and magnetic field modeling of a solar polar crown prominence. Astrophys. J. 757, 168. DOI . ADS .

    ADS  Google Scholar 

  • Su, Y., van Ballegooijen, A.: 2013, Rotating motions and modeling of the erupting solar polar-crown prominence on 2010 December 6. Astrophys. J. 764, 91. DOI . ADS .

    ADS  Google Scholar 

  • Su, Y., Lu, M., van Ballegooijen, A.: 2012, Structure and dynamics of quiescent prominence eruptions. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting, Astron. Soc. Pac. CS-456, 165. ADS .

    Google Scholar 

  • Su, Y., van Ballegooijen, A., McCauley, P.I., Haisheng, J., Reeves, K.K., E., D.: 2015, Magnetic structure and dynamics of the erupting solar polar crown prominence on 2012 March 12. Astrophys. J. submitted.

  • Sung, S.-K., Marubashi, K., Cho, K.-S., Kim, Y.-H., Kim, K.-H., Chae, J., Moon, Y.-J., Kim, I.-H.: 2009, A comparison of the initial speed of coronal mass ejections with the magnetic flux and magnetic helicity of magnetic clouds. Astrophys. J. 699, 298. DOI . ADS .

    ADS  Google Scholar 

  • Tandberg-Hanssen, E.: 1998, The history of solar prominence research (review). In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pac. CS-150, 11. ADS .

    Google Scholar 

  • Thompson, W.T.: 2013, Alternating twist along an erupting prominence. Solar Phys. 283, 489. DOI . ADS .

    ADS  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97. DOI . ADS .

    ADS  Google Scholar 

  • Török, T., Berger, M.A., Kliem, B.: 2010, The writhe of helical structures in the solar corona. Astron. Astrophys. 516, A49. DOI . ADS .

    Google Scholar 

  • Török, T., Kliem, B., Berger, M.A., Linton, M.G., Démoulin, P., van Driel-Gesztelyi, L.: 2014, The evolution of writhe in kink-unstable flux ropes and erupting filaments. Plasma Phys. Control. Fusion 56, 064012. DOI . ADS .

    ADS  Google Scholar 

  • Tripathi, D., Isobe, H., Mason, H.E.: 2006, On the propagation of brightening after filament/prominence eruptions, as seen by SoHO-EIT. Astron. Astrophys. 453, 1111. DOI . ADS .

    ADS  Google Scholar 

  • Tripathi, D., Reeves, K.K., Gibson, S.E., Srivastava, A., Joshi, N.C.: 2013, SDO/AIA observations of a partially erupting prominence. Astrophys. J. 778, 142. DOI . ADS .

    ADS  Google Scholar 

  • Tziotziou, K., Moraitis, K., Georgoulis, M.K., Archontis, V.: 2014, Validation of the magnetic energy vs. helicity scaling in solar magnetic structures. Astron. Astrophys. 570, L1. DOI . ADS .

    ADS  Google Scholar 

  • van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971. DOI . ADS .

    ADS  Google Scholar 

  • van Ballegooijen, A.A., Cranmer, S.R.: 2010, Tangled magnetic fields in solar prominences. Astrophys. J. 711, 164. DOI . ADS .

    ADS  Google Scholar 

  • van Tend, W., Kuperus, M.: 1978, The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115. DOI . ADS .

    ADS  Google Scholar 

  • Vial, J.-C., Engvold, O. (eds.): 2015, Solar Prominences, Astrophys. Space Sci. Lib. 415. DOI . ADS .

    Google Scholar 

  • Wang, Y., Cao, H., Chen, J., Zhang, T., Yu, S., Zheng, H., Shen, C., Zhang, J., Wang, S.: 2010, Solar Limb Prominence Catcher and Tracker (SLIPCAT): An automated system and its preliminary statistical results. Astrophys. J. 717, 973. DOI . ADS .

    ADS  Google Scholar 

  • Webb, D.F.: 2015, Eruptive prominences and their association with coronal mass ejections. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 411. DOI . ADS .

    Google Scholar 

  • Williams, D.R., Baker, D., van Driel-Gesztelyi, L.: 2013, Mass estimates of rapidly moving prominence material from high-cadence EUV images. Astrophys. J. 764, 165. DOI . ADS .

    ADS  Google Scholar 

  • Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163. DOI . ADS .

    ADS  Google Scholar 

  • Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Soc. Photo-Opt. Instr. Eng. (SPIE) CS-5171, 111. DOI . ADS .

    Google Scholar 

  • Yan, X.L., Xue, Z.K., Liu, J.H., Ma, L., Kong, D.F., Qu, Z.Q., Li, Z.: 2014, Kink instability evidenced by analyzing the leg rotation of a filament. Astrophys. J. 782, 67. DOI . ADS .

    ADS  Google Scholar 

  • Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., Gopalswamy, N.: 2005, Statistical distributions of speeds of coronal mass ejections. Astrophys. J. 619, 599. DOI . ADS .

    ADS  Google Scholar 

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100. DOI . ADS .

    ADS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the National Aeronautics and Space Administration (NASA) through grant NNX12AI30G to the Smithsonian Astrophysical Observatory (SAO), by the National Science Foundation (NSF) through grant AGS1263241 for the solar physics Research Experiences for Undergraduates (REU) program at SAO, and by the Lockheed-Martin Solar and Astrophysics Laboratory (LMSAL) through contract SP02H1701R to SAO for support of the AIA. Additional support was provided by the National Science Foundation of China (NSFC) through grants No. 11333009, 11173062, 11473071, and J1210039, along with the Youth Fund of Jiangsu through grant No. BK20141043. The SDO is a NASA satellite, and the AIA instrument team is led by LMSAL. We gratefully acknowledge the anonymous referee for their constructive comments. P.I.M. thanks Sarah Gibson for her FORWARD tutorial, which facilitated our decay index analyses. We also thank the observers who contributed filament eruptions to the HEK: Anna Malanushenko, Nariaki Nitta, Wei Liu, Karel Schrijver, Mark Cheung, Ryan Timmons, Thomas Berger, Marc DeRosa, Ralph Seguin, Paul Higgins, Juan Martínez-Skyora, Alberto Sainz-Dalda, Gregory Slater, and Neil Hurlburt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. I. McCauley or Y. N. Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCauley, P.I., Su, Y.N., Schanche, N. et al. Prominence and Filament Eruptions Observed by the Solar Dynamics Observatory: Statistical Properties, Kinematics, and Online Catalog. Sol Phys 290, 1703–1740 (2015). https://doi.org/10.1007/s11207-015-0699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0699-7

Keywords