Abstract
We present a statistical study of prominence and filament eruptions observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Several properties are recorded for 904 events that were culled from the Heliophysics Event Knowledgebase (HEK) and incorporated into an online catalog for general use. These characteristics include the filament and eruption type, eruption symmetry and direction, apparent twisting and writhing motions, and the presence of vertical threads and coronal cavities. Associated flares and white-light coronal mass ejections (CME) are also recorded. Total rates are given for each property along with how they differ among filament types. We also examine the kinematics of 106 limb events to characterize the distinct slow- and fast-rise phases often exhibited by filament eruptions. The average fast-rise onset height, slow-rise duration, slow-rise velocity, maximum field-of-view (FOV) velocity, and maximum FOV acceleration are 83 Mm, 4.4 hours, 2.1 km s−1, 106 km s−1, and 111 m s−2, respectively. All parameters exhibit lognormal probability distributions similar to that of CME speeds. A positive correlation between latitude and fast-rise onset height is found, which we attribute to a corresponding negative correlation in the average vertical magnetic field gradient, or decay index, estimated from potential field source surface (PFSS) extrapolations. We also find the decay index at the fast-rise onset point to be 1.1 on average, consistent with the critical instability threshold theorized for straight current channels. Finally, we explore relationships between the derived kinematics properties and apparent twisting motions. We find that events with evident twist have significantly faster CME speeds and significantly lower fast-rise onset heights, suggesting relationships between these values and flux rope helicity.
Similar content being viewed by others
Notes
Heliophysics Event Knowledgebase: http://www.lmsal.com/hek/ .
Helioviewer: http://helioviewer.org/ .
SDO Filament Eruption Catalog: http://aia.cfa.harvard.edu/filament/ .
Hinode/XRT Flare Catalog: http://xrt.cfa.harvard.edu/flare_catalog/ .
Hinode and SDO Sigmoid Catalog: http://aia.cfa.harvard.edu/sigmoid/ .
SolarSoft Latest Events: http://www.lmsal.com/solarsoft/latest_events/ .
CACTus CME catalog: http://sidc.oma.be/cactus/ .
SolarSoft IDL FORWARD Package: http://www.hao.ucar.edu/FORWARD/ .
SolarSoft IDL PFSS Package: http://www.lmsal.com/~derosa/pfsspack/ .
References
Alexander, D., Metcalf, T.R., Nitta, N.V.: 2002, Fast acceleration of a CME-related X-ray structure in the low solar corona. Geophys. Res. Lett. 29, 1403. DOI . ADS .
Amari, T., Aly, J.-J., Mikic, Z., Linker, J.: 2010, Coronal mass ejection initiation: On the nature of the flux cancellation model. Astrophys. J. Lett. 717, L26. DOI . ADS .
Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI . ADS .
Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314. DOI . ADS .
Bateman, G.: 1978, MHD Instabilities, MIT Press, Cambridge. ADS .
Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Muhr, N., Kienreich, I., Utz, D., Vršnak, B.: 2011, Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191. DOI . ADS .
Berger, T., Testa, P., Hillier, A., Boerner, P., Low, B.C., Shibata, K., Schrijver, C., Tarbell, T., Title, A.: 2011, Magneto-thermal convection in solar prominences. Nature 472, 197. DOI . ADS .
Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI . ADS .
Canny, J.: 1986, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679. DOI .
Chae, J.: 2010, Dynamics of vertical threads and descending knots in a hedgerow prominence. Astrophys. J. 714, 618. DOI . ADS .
Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524. DOI . ADS .
Chen, B., Bastian, T.S., Gary, D.E.: 2014, Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection. Astrophys. J. 794, 149. DOI . ADS .
Cheng, X., Zhang, J., Ding, M.D., Olmedo, O., Sun, X.D., Guo, Y., Liu, Y.: 2013, Investigating two successive flux rope eruptions in a solar active region. Astrophys. J. Lett. 769, L25. DOI . ADS .
Chifor, C., Mason, H.E., Tripathi, D., Isobe, H., Asai, A.: 2006, The early phases of a solar prominence eruption and associated flare: A multi-wavelength analysis. Astron. Astrophys. 458, 965. DOI . ADS .
Chifu, I., Inhester, B., Mierla, M., Chifu, V., Wiegelmann, T.: 2012, First 4D reconstruction of an eruptive prominence using three simultaneous view directions. Solar Phys. 281, 121. DOI . ADS .
D’Agostino, R.B., Stephens, M.A. (eds.): 1986, Goodness-of-Fit Techniques, Dekker, New York. 0-824-77487-6.
Démoulin, P., Aulanier, G.: 2010, Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys. J. 718, 1388. DOI . ADS .
Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1. DOI . ADS .
Engvold, O.: 2015, Description and classification of prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 31. DOI . ADS .
Fan, Y.: 2012, Thermal signatures of tether-cutting reconnections in pre-eruption coronal flux ropes: Hot central voids in coronal cavities. Astrophys. J. 758, 60. DOI . ADS .
Fan, Y.: 2015, MHD equilibria and triggers for prominence eruption. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 297. DOI . ADS .
Fan, Y., Gibson, S.E.: 2007, Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys. J. 668, 1232. DOI . ADS .
Filippov, B.P.: 2013, Height of a solar filament before eruption. Astron. Rep. 57, 778. DOI . ADS .
Filippov, B.P., Den, O.G.: 2000, Prominence height and vertical gradient in magnetic field. Astron. Lett. 26, 322. DOI . ADS .
Filippov, B.P., Den, O.G.: 2001, A critical height of quiescent prominences before eruption. J. Geophys. Res. 106, 25177. DOI . ADS .
Forland, B.C., Gibson, S.E., Dove, J.B., Rachmeler, L.A., Fan, Y.: 2013, Coronal cavity survey: Morphological clues to eruptive magnetic topologies. Solar Phys. 288, 603. DOI . ADS .
Foullon, C., Verwichte, E.: 2006, Automated detection of EUV prominences. Solar Phys. 234, 135. DOI . ADS .
Fuller, J., Gibson, S.E.: 2009, A survey of coronal cavity density profiles. Astrophys. J. 700, 1205. DOI . ADS .
Gibson, S.: 2015, Coronal cavities: Observations and implications for the magnetic environment of prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 323. DOI . ADS .
Gibson, S.E., Fan, Y.: 2006, Coronal prominence structure and dynamics: A magnetic flux rope interpretation. J. Geophys. Res. 111(A10), 12103. DOI . ADS .
Gibson, S.E., Kucera, T.A., Casini, R., Dove, J., Forland, B., Judge, P., Rachmeler, L.: 2014, FORWARD: Forward modeling of coronal observables, Astrophysics Source Code Library. ADS .
Gilbert, H.R., Alexander, D., Liu, R.: 2007, Filament kinking and its implications for eruption and re-formation. Solar Phys. 245, 287. DOI . ADS .
Gilbert, H.R., Holzer, T.E., Burkepile, J.T., Hundhausen, A.J.: 2000, Active and eruptive prominences and their relationship to coronal mass ejections. Astrophys. J. 537, 503. DOI . ADS .
Goff, C.P., van Driel-Gesztelyi, L., Harra, L.K., Matthews, S.A., Mandrini, C.H.: 2005, A slow coronal mass ejection with rising X-ray source. Astron. Astrophys. 434, 761. DOI . ADS .
Gopalswamy, N.: 2015, The dynamics of eruptive prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 381. DOI . ADS .
Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. Astrophys. J. 586, 562. DOI . ADS .
Gui, B., Shen, C., Wang, Y., Ye, P., Liu, J., Wang, S., Zhao, X.: 2011, Quantitative analysis of CME deflections in the corona. Solar Phys. 271, 111. DOI . ADS .
Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .
Hundhausen, A.: 1999, Coronal mass ejections. In: Strong, K.T., Saba, J.L.R., Haisch, B.M., Schmelz, J.T. (eds.) The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, 143. ADS .
Hurlburt, N., Cheung, M., Schrijver, C., Chang, L., Freeland, S., Green, S., Heck, C., Jaffey, A., Kobashi, A., Schiff, D., Serafin, J., Seguin, R., Slater, G., Somani, A., Timmons, R.: 2012, Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. Solar Phys. 275, 67. DOI . ADS .
Isobe, H., Tripathi, D., Asai, A., Jain, R.: 2007, Large-amplitude oscillation of an erupting filament as seen in EUV, Hα, and microwave observations. Solar Phys. 246, 89. DOI . ADS .
Joshi, V., Srivastava, N.: 2007, On the study of kinematics of eruptive quiescent prominences observed in He 304 Å. Bull. Astron. Soc. India 35, 447. ADS .
Joshi, A.D., Srivastava, N.: 2011, Kinematics of two eruptive prominences observed by EUVI/STEREO. Astrophys. J. 730, 104. DOI . ADS .
Kay, C., Opher, M., Evans, R.M.: 2014, Global trends of CME deflections based on CME and solar parameters. ArXiv e-prints. ADS .
Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI . ADS .
Koleva, K., Madjarska, M.S., Duchlev, P., Schrijver, C.J., Vial, J.-C., Buchlin, E., Dechev, M.: 2012, Kinematics and helicity evolution of a loop-like eruptive prominence. Astron. Astrophys. 540, A127. DOI . ADS .
Kundu, M.R., White, S.M., Garaimov, V.I., Manoharan, P.K., Subramanian, P., Ananthakrishnan, S., Janardhan, P.: 2004, Radio observations of rapid acceleration in a slow filament eruption/fast coronal mass ejection event. Astrophys. J. 607, 530. DOI . ADS .
Labrosse, N., Schmieder, B., Heinzel, P., Watanabe, T.: 2011, EUV lines observed with EIS/Hinode in a solar prominence. Astron. Astrophys. 531, A69. DOI . ADS .
Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .
Leroy, J.L., Bommier, V., Sahal-Brechot, S.: 1984, New data on the magnetic structure of quiescent prominences. Astron. Astrophys. 131, 33. ADS .
Limpert, E., Stahel, W.A., Abbt, M.: 2001, Log-normal distributions across the sciences: Keys and clues. Bioscience 51(5), 341. http://www.stat.math.ethz.ch/~stahel/lognormal/bioscience.pdf .
Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375. DOI . ADS .
Lin, Y., Martin, S.F., Engvold, O.: 2008, Filament substructures and their interrelation. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astron. Soc. Pac. CS-383, 235. ADS .
Liu, Y.: 2008, Magnetic field overlying solar eruption regions and kink and torus instabilities. Astrophys. J. Lett. 679, L151. DOI . ADS .
Liu, R., Alexander, D., Gilbert, H.R.: 2009, Asymmetric eruptive filaments. Astrophys. J. 691, 1079. DOI . ADS .
Liu, K., Wang, Y., Shen, C., Wang, S.: 2012a, Critical height for the destabilization of solar prominences: Statistical results from STEREO observations. Astrophys. J. 744, 168. DOI . ADS .
Liu, R., Kliem, B., Török, T., Liu, C., Titov, V.S., Lionello, R., Linker, J.A., Wang, H.: 2012b, Slow rise and partial eruption of a double-Decker filament. I. Observations and interpretation. Astrophys. J. 756, 59. DOI . ADS .
Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys. J. 443, 818. DOI . ADS .
Low, B.C., Berger, T., Casini, R., Liu, W.: 2012a, The hydromagnetic interior of a solar quiescent prominence. I. Coupling between force balance and steady energy transport. Astrophys. J. 755, 34. DOI . ADS .
Low, B.C., Liu, W., Berger, T., Casini, R.: 2012b, The hydromagnetic interior of a solar quiescent prominence. II. Magnetic discontinuities and cross-field mass transport. Astrophys. J. 757, 21. DOI . ADS .
Lugaz, N.: 2015, Eruptive prominences and their impact on the Earth and our life. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 433. DOI . ADS .
Mackay, D.H.: 2015, Formation and large-scale patterns of filament channels and filaments. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 355. DOI . ADS .
Mackay, D.H., Gaizauskas, V., Yeates, A.R.: 2008, Where do solar filaments form? Consequences for theoretical models. Solar Phys. 248, 51. DOI . ADS .
Makarov, V.I.: 1994, Global magnetic activity in 22-year solar cycles. Solar Phys. 150, 359. DOI . ADS .
Makarov, V.I., Tavastsherna, K.S., Davydova, E.I., Sivaraman, K.R.: 1992, Variations of prominence heights in high latitude global magnetic neutral lines. Bull. Soln. Dannye Akad. Nauk SSSR 3, 90. ADS .
Maričić, D., Vršnak, B., Roša, D.: 2009, Relative kinematics of the leading edge and the prominence in coronal mass ejections. Solar Phys. 260, 177. DOI . ADS .
Markwardt, C.B.: 2009, Non-linear least-squares fitting in IDL with MPFIT. In: Bohlender, D.A., Durand, D., Dowler, P. (eds.) Astronomical Data Analysis Software and Systems XVIII, Astron. Soc. Pac. CS-411, 251. ADS .
Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883. DOI . ADS .
Masson, S., McCauley, P., Golub, L., Reeves, K.K., DeLuca, E.E.: 2014, Dynamics of the transition corona. Astrophys. J. 787, 145. DOI . ADS .
McKillop, S., Miralles, M.P., Murphy, N.A., McCauley, P.: 2014, Rolling motions during solar prominence eruptions in asymmetric magnetic environments. In: Am. Astron. Soc. Meeting Abstracts #224, #218.30. ADS .
Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.: 2002, A statistical study of two classes of coronal mass ejections. Astrophys. J. 581, 694. DOI . ADS .
Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201. DOI . ADS .
Murphy, N.A., Miralles, M.P., Pope, C.L., Raymond, J.C., Winter, H.D., Reeves, K.K., Seaton, D.B., van Ballegooijen, A.A., Lin, J.: 2012, Asymmetric magnetic reconnection in solar flare and coronal mass ejection current sheets. Astrophys. J. 751, 56. DOI . ADS .
Paletou, F., López Ariste, A., Bommier, V., Semel, M.: 2001, Full-Stokes spectropolarimetry of solar prominences. Astron. Astrophys. 375, L39. DOI . ADS .
Panasenco, O., Martin, S., Joshi, A.D., Srivastava, N.: 2011, Rolling motion in erupting prominences observed by STEREO. J. Atmos. Solar-Terr. Phys. 73, 1129. DOI . ADS .
Panasenco, O., Martin, S.F., Velli, M., Vourlidas, A.: 2013, Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Phys. 287, 391. DOI . ADS .
Parenti, S.: 2014, Solar prominences: Observations. Living Rev. Solar Phys. 11, 1. DOI . ADS .
Park, S.-H., Cho, K.-S., Bong, S.-C., Kumar, P., Chae, J., Liu, R., Wang, H.: 2012, The occurrence and speed of CMEs related to two characteristic evolution patterns of helicity injection in their solar source regions. Astrophys. J. 750, 48. DOI . ADS .
Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .
Reeves, K.K., McCauley, P.I., Tian, H.: 2015, Direct observations of magnetic reconnection outflow and CME triggering in a small erupting solar prominence. Astrophys. J. in press.
Reeves, K.K., Linker, J.A., Mikić, Z., Forbes, T.G.: 2010, Current sheet energetics, flare emissions, and energy partition in a simulated solar eruption. Astrophys. J. 721, 1547. DOI . ADS .
Reeves, K.K., Gibson, S.E., Kucera, T.A., Hudson, H.S., Kano, R.: 2012, Thermal properties of a solar coronal cavity observed with the X-ray telescope on Hinode. Astrophys. J. 746, 146. DOI . ADS .
Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys. 533, L1. DOI . ADS .
Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI . ADS .
Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1222. DOI . ADS .
Romano, P., Contarino, L., Zuccarello, F.: 2003, Eruption of a helically twisted prominence. Solar Phys. 214, 313. DOI . ADS .
Savcheva, A.S., McKillop, S.C., McCauley, P.I., Hanson, E.M., DeLuca, E.E.: 2014, A new sigmoid catalog from Hinode and the Solar Dynamics Observatory: Statistical properties and evolutionary histories. Solar Phys. 289, 3297. DOI . ADS .
Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .
Scholz, F.W., Stephens, M.A.: 1987, K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 82(399), 918.
Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .
Schrijver, C.J., Elmore, C., Kliem, B., Török, T., Title, A.M.: 2008, Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys. J. 674, 586. DOI . ADS .
Sheeley, N.R. Jr., Michels, D.J., Howard, R.A., Koomen, M.J.: 1980, Initial observations with the SOLWIND coronagraph. Astrophys. J. Lett. 237, L99. DOI . ADS .
Simnett, G.M.: 2000, The relationship between prominence eruptions and coronal mass ejections. J. Atmos. Solar-Terr. Phys. 62, 1479. DOI . ADS .
Sterling, A.C., Moore, R.L.: 2004, Evidence for gradual external reconnection before explosive eruption of a solar filament. Astrophys. J. 602, 1024. DOI . ADS .
Sterling, A.C., Moore, R.L.: 2005, Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J. 630, 1148. DOI . ADS .
Sterling, A.C., Harra, L.K., Moore, R.L.: 2007, New evidence for the role of emerging flux in a solar filament’s slow rise preceding its CME-producing fast eruption. Astrophys. J. 669, 1359. DOI . ADS .
Sterling, A.C., Moore, R.L., Freeland, S.L.: 2011, Insights into filament eruption onset from solar dynamics observatory observations. Astrophys. J. Lett. 731, L3. DOI . ADS .
Sterling, A.C., Moore, R.L., Berger, T.E., Bobra, M., Davis, J.M., Jibben, P., Kano, R., Lundquist, L.L., Myers, D., Narukage, N., Sakao, T., Shibasaki, K., Shine, R.A., Tarbell, T.D., Weber, M.: 2007, Hinode observations of the onset stage of a solar filament eruption. Publ. Astron. Soc. Japan 59, 823. DOI . ADS .
Su, Y., van Ballegooijen, A.: 2012, Observations and magnetic field modeling of a solar polar crown prominence. Astrophys. J. 757, 168. DOI . ADS .
Su, Y., van Ballegooijen, A.: 2013, Rotating motions and modeling of the erupting solar polar-crown prominence on 2010 December 6. Astrophys. J. 764, 91. DOI . ADS .
Su, Y., Lu, M., van Ballegooijen, A.: 2012, Structure and dynamics of quiescent prominence eruptions. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting, Astron. Soc. Pac. CS-456, 165. ADS .
Su, Y., van Ballegooijen, A., McCauley, P.I., Haisheng, J., Reeves, K.K., E., D.: 2015, Magnetic structure and dynamics of the erupting solar polar crown prominence on 2012 March 12. Astrophys. J. submitted.
Sung, S.-K., Marubashi, K., Cho, K.-S., Kim, Y.-H., Kim, K.-H., Chae, J., Moon, Y.-J., Kim, I.-H.: 2009, A comparison of the initial speed of coronal mass ejections with the magnetic flux and magnetic helicity of magnetic clouds. Astrophys. J. 699, 298. DOI . ADS .
Tandberg-Hanssen, E.: 1998, The history of solar prominence research (review). In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pac. CS-150, 11. ADS .
Thompson, W.T.: 2013, Alternating twist along an erupting prominence. Solar Phys. 283, 489. DOI . ADS .
Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97. DOI . ADS .
Török, T., Berger, M.A., Kliem, B.: 2010, The writhe of helical structures in the solar corona. Astron. Astrophys. 516, A49. DOI . ADS .
Török, T., Kliem, B., Berger, M.A., Linton, M.G., Démoulin, P., van Driel-Gesztelyi, L.: 2014, The evolution of writhe in kink-unstable flux ropes and erupting filaments. Plasma Phys. Control. Fusion 56, 064012. DOI . ADS .
Tripathi, D., Isobe, H., Mason, H.E.: 2006, On the propagation of brightening after filament/prominence eruptions, as seen by SoHO-EIT. Astron. Astrophys. 453, 1111. DOI . ADS .
Tripathi, D., Reeves, K.K., Gibson, S.E., Srivastava, A., Joshi, N.C.: 2013, SDO/AIA observations of a partially erupting prominence. Astrophys. J. 778, 142. DOI . ADS .
Tziotziou, K., Moraitis, K., Georgoulis, M.K., Archontis, V.: 2014, Validation of the magnetic energy vs. helicity scaling in solar magnetic structures. Astron. Astrophys. 570, L1. DOI . ADS .
van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971. DOI . ADS .
van Ballegooijen, A.A., Cranmer, S.R.: 2010, Tangled magnetic fields in solar prominences. Astrophys. J. 711, 164. DOI . ADS .
van Tend, W., Kuperus, M.: 1978, The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115. DOI . ADS .
Vial, J.-C., Engvold, O. (eds.): 2015, Solar Prominences, Astrophys. Space Sci. Lib. 415. DOI . ADS .
Wang, Y., Cao, H., Chen, J., Zhang, T., Yu, S., Zheng, H., Shen, C., Zhang, J., Wang, S.: 2010, Solar Limb Prominence Catcher and Tracker (SLIPCAT): An automated system and its preliminary statistical results. Astrophys. J. 717, 973. DOI . ADS .
Webb, D.F.: 2015, Eruptive prominences and their association with coronal mass ejections. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 411. DOI . ADS .
Williams, D.R., Baker, D., van Driel-Gesztelyi, L.: 2013, Mass estimates of rapidly moving prominence material from high-cadence EUV images. Astrophys. J. 764, 165. DOI . ADS .
Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163. DOI . ADS .
Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Soc. Photo-Opt. Instr. Eng. (SPIE) CS-5171, 111. DOI . ADS .
Yan, X.L., Xue, Z.K., Liu, J.H., Ma, L., Kong, D.F., Qu, Z.Q., Li, Z.: 2014, Kink instability evidenced by analyzing the leg rotation of a filament. Astrophys. J. 782, 67. DOI . ADS .
Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., Gopalswamy, N.: 2005, Statistical distributions of speeds of coronal mass ejections. Astrophys. J. 619, 599. DOI . ADS .
Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100. DOI . ADS .
Acknowledgements
Support for this work was provided by the National Aeronautics and Space Administration (NASA) through grant NNX12AI30G to the Smithsonian Astrophysical Observatory (SAO), by the National Science Foundation (NSF) through grant AGS1263241 for the solar physics Research Experiences for Undergraduates (REU) program at SAO, and by the Lockheed-Martin Solar and Astrophysics Laboratory (LMSAL) through contract SP02H1701R to SAO for support of the AIA. Additional support was provided by the National Science Foundation of China (NSFC) through grants No. 11333009, 11173062, 11473071, and J1210039, along with the Youth Fund of Jiangsu through grant No. BK20141043. The SDO is a NASA satellite, and the AIA instrument team is led by LMSAL. We gratefully acknowledge the anonymous referee for their constructive comments. P.I.M. thanks Sarah Gibson for her FORWARD tutorial, which facilitated our decay index analyses. We also thank the observers who contributed filament eruptions to the HEK: Anna Malanushenko, Nariaki Nitta, Wei Liu, Karel Schrijver, Mark Cheung, Ryan Timmons, Thomas Berger, Marc DeRosa, Ralph Seguin, Paul Higgins, Juan Martínez-Skyora, Alberto Sainz-Dalda, Gregory Slater, and Neil Hurlburt.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
McCauley, P.I., Su, Y.N., Schanche, N. et al. Prominence and Filament Eruptions Observed by the Solar Dynamics Observatory: Statistical Properties, Kinematics, and Online Catalog. Sol Phys 290, 1703–1740 (2015). https://doi.org/10.1007/s11207-015-0699-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11207-015-0699-7