Abstract
The record of total solar irradiance (TSI) during the past 35 years shows similarities of the three solar cycles, but also important differences. During the recent minimum with an unusually long periods with no sunspots, TSI was also extremely low, namely 25% of a typical cycle amplitude lower than in 1996. Together with the values during the previous minima this points to a long-term change related to the strength of solar activity. On the other hand, activity indices as the 10.7 cm radio flux (F10.7), the CaII and MgII indices and also the Ly-α irradiance, show a much smaller decrease. This means that proxy models for TSI based on the photometric sunspot index (PSI), and on e.g. MgII index to represent faculae and network have to be complemented by a further component for the long-term change. TSI values at minima are correlated with the simultaneous values of the open magnetic field of the Sun at 1 AU and thus, these values may be used as a surrogate for the long-term change component. Such a 4-component model explains almost 85% of the variance of TSI over the three solar cycles available. This result supports also the idea that the long-term change of TSI is not due to manifestations of surface magnetism as the solar cycle modulation, but due to a change of the global temperature of Sun modulated by the strength of activity—being lower during low activity. To explain the difference between the minima in 1996 and 2008 we need a change of only 0.25 K.
Similar content being viewed by others
References
L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. (2009). doi:10.1029/2009JA014299
P.N. Brandt, M. Stix, H. Weinhardt, Modeling solar irradiance variations with an area dependent photometric sunspot index. Sol. Phys. 152, 119–124 (1994). doi:10.1007/BF01473193
G.A. Chapman, A.M. Cookson, J.J. Dobias, Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541–13548 (1996)
P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 2, 2–83 (2005)
D. Crommelynck, V. Domingo, A. Fichot, C. Fröhlich, B. Penelle, J. Romero, C. Wehrli, Preliminary results from the SOVA experiment on board the European Retrievable Carrier (EURECA). Metrologia 30, 375–380 (1993)
D. Crommelynck, A. Fichot, R.B. Lee III, J. Romero, First realisation of the space absolute radiometric reference (SARR) during the ATLAS 2 flight period. Adv. Space Res. 16, 8–17823 (1995)
S. Dewitte, D. Crommelynck, S. Mekaoui, A. Joukoff, Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys. 224, 209–216 (2004). doi:10.1007/s11207-005-5698-7
V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi:10.1007/s11214-009-9562-1
I. Ermolli, S.K. Solanki, A.G. Tlatov, N.A. Krivova, R.K. Ulrich, J. Singh, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000–1009 (2009). doi:10.1088/0004-637X/698/2/1000
M. Fligge, S.K. Solanki, Inter-Cycle Variations of solar irradiance: sunspot areas as a pointer. Sol. Phys. 173, 427–439 (1997)
P.V. Foukal, J. Lean, Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347–357 (1988)
P.V. Foukal, J. Lean, An empirical model of total solar irradiance variation between 1874 and 1988. Science 247, 556–558 (1990)
P. Foukal, L. Bertello, W. Livingston, A. Pevtsov, J. Singh, A. Tlatov, R. Ulrich, A century of solar Ca II K measurements and their implications for solar UV driving of climate. Sol. Phys. 255, 229–238 (2009). doi:10.1007/s11207-009-9330-0
C. Fröhlich, Long-term behavior of space radiometers. Metrologia 40, 60–65 (2003)
C. Fröhlich, Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21. Space Sci. Rev. 125, 53–65 (2006). doi:10.1007/s11214-006-9046-5
C. Fröhlich, Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 501, 27–30 (2009a). doi:10.1051/0004-6361/200912318
C. Fröhlich, Total solar irradiance variability: what have we learned about its variability from the record of the last three solar cycles? in Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, ed. by T. Tsuda, R. Fujii, K. Shibata, M.A. Geller (Terra Publishing, Tokyo, 2009b), pp. 217–230. available at http://www.terrapub.co.jp/onlineproceedings/ste/CAWSES2007/index.html
C. Fröhlich, J. Lean, The sun’s total irradiance: cycles and trends in the past two decades and associated climate change uncertainties. Geophys. Res. Lett. 25, 4377–4380 (1998)
C. Fröhlich, J. Lean, Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev. 12, 273–320 (2004). doi:10.1007/s00159-004-0024-1
C. Fröhlich, J.M. Pap, H.S. Hudson, Improvement of the photometric sunspot index and changes of disk-integrated sunspot contrast with time. Sol. Phys. 152, 111–118 (1994)
C. Fröhlich, D. Crommelynck, C. Wehrli, M. Anklin, S. Dewitte, A. Fichot, W. Finsterle, A. Jiménez, A. Chevalier, H.J. Roth, In-flight performances of VIRGO solar irradiance instruments on SOHO. Sol. Phys. 175, 267–286 (1997)
C. Fröhlich, A four-component proxy model for total solar irradiance calibrated during solar cycles 21–23. (2011, submitted) preprint available at ftp://ftp.pmodwrc.ch/pub/Claus/EAST-WS/caosp_frohlich.pdf
J.W. Harvey, D. Branston, C.J. Henney, C.U. Keller, SOLIS and GONG Teams, seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. 659, 177–180 (2007). doi:10.1086/518036
K. Harvey, Irradiance models based on solar magnetic field observations, in The Sun as a Variable Star: Solar and Stellar Irradiance Variations, ed. by J.M. Pap, C. Fröhlich, H.S. Hudson, S.K. Solanki (Cambridge University Press, Cambridge, 1994), pp. 217–225
D.F. Heath, B.M. Schlesinger, The Mg-280 nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986)
D.V. Hoyt, H.L. Kyle, J.R. Hickey, R.H. Maschhoff, The NIMBUS-7 solar total irradiance: a new algorithm for its derivation. J. Geophys. Res. 97, 51–63 (1992)
H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–218 (1982)
P.G. Judge, S.H. Saar, The Outer Solar Atmosphere during the maunder minimum: a stellar perspective. Astrophys. J. 663, 643–656 (2007). doi:10.1086/513004
G. Kopp, G. Lawrence, The total irradiance monitor (TIM): instrument design. Sol. Phys. 230, 91–109 (2005). doi:10.1007/s11207-005-7446-4
N.A. Krivova, L. Balmaceda, S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007). doi:10.1051/0004-6361:20066725
N.A. Krivova, S.K. Solanki, L. Floyd, Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys. 452, 631–639 (2006). doi:10.1051/0004-6361:20064809
N.A. Krivova, S.K. Solanki, T. Wenzler, ACRIM-gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? Geophys. Res. Lett. (2009). doi:10.1029/2009GL040707
N.A. Krivova, L.E.A. Vieira, S.K. Solanki, Reconstruction of solar spectral irradiance since the maunder minimum. J. Geophys. Res. (2010, in press). doi:10.1029/2010JA015431
N.A. Krivova, S.K. Solanki, M. Fligge, Y.C. Unruh, Reconstruction of solar total and spectral irradiance variations in cycle 23: is solar surface magnetism the cause? Astron. Astrophys. 399, 1–4 (2003)
J. Lean, J. Beer, R. Bradley, Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995)
R.B. Lee III, M.A. Gibson, R.S. Wilson, S. Thomas, Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res. 100, 1667–1675 (1995)
W. Livingston, M. Penn, Are sunspots different during this solar minimum? EOS Trans. 90, 257–258 (2009). doi:10.1029/2009EO300001
W. Livingston, L. Wallace, The Sun’s immutable basal quiet atmosphere. Sol. Phys. 212, 227–237 (2003)
M. Lockwood, Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. R. Soc. A 466, 303–329 (2010). doi:10.1098/rspa.2009.0519
M. Lockwood, C. Fröhlich, Recent oppositely directed trends in solar climate forcing and the global mean surface air temperature. Proc. R. Soc. A 463, 2447–2460 (2007). doi:10.1098/rspa.2007.1880
M. Lockwood, C. Fröhlich, Recent oppositely-directed trends in solar climate forcings and the global mean surface air temperature. II. Different reconstructions of the total solar irradiance variation and dependence on response timescale. Proc. R. Soc. A 464, 1367–1385 (2008). doi:10.1098/rspa.2007.0347
M. Lockwood, M. Owens, A.P. Rouillard, Excess open solar magnetic flux from satellite data. 1. Analysis of the third perihelion Ulysses pass. J. Geophys. Res. (2009a). doi:10.1029/2009JA014449
M. Lockwood, M. Owens, A.P. Rouillard, Excess open solar magnetic flux from satellite data. 2. A survey of kinematic effects. J. Geophys. Res. (2009b). doi:10.1029/2009JA014450
M.R. Luther, R.B. Lee III, B.R. Barkstrom, J.E. Cooper, R.D. Cess, C.H. Duncan, Solar calibration results from two earth radiation budget experiment nonscanner instruments. Appl. Opt. 25, 540–545 (1986)
S.K. Mathew, V. Martínez Pillet, S.K. Solanki, N.A. Krivova, Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase. Astron. Astrophys. 465, 291–304 (2007). doi:10.1051/0004-6361:20066356
A. Ortiz, Solar cycle evolution of the contrast of small photospheric magnetic elements. Adv. Space Res. 35, 350–360 (2005). doi:10.1016/j.asr.2005.03.014
A. Pierce, Limb darkening, in Allen’s Astrophysical Quantities, 4th edn. ed. by A. Cox (Springer, New York, 2000), pp. 355–357. Chap. 14.7
A.P. Rouillard, M. Lockwood, I. Finch, Centennial changes in the solar wind speed and in the open solar flux. J. Geophys. Res. (2007). doi:10.1029/2006JA012130
N. Scafetta, Climate change and its causes, a discussion about some key issues, in SPPI Original Paper (Science and Public Policy Institute, Haymarket, 2010), pp. 1–56. http://scienceandpublicpolicy.org/images/stories/papers/originals/climate_change_cause.pdf
N. Scafetta, R.C. Willson, ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys. Res. Lett. (2009). doi:10.1029/2008GL036307
S.K. Solanki, N.A. Krivova, T. Wenzler, Irradiance models. Adv. Space Res. 35, 376–383 (2005). doi:10.1016/j.asr.2004.12.077
M. Steinegger, P.N. Brandt, J. Pap, W. Schmidt, Sunspot photometry and the total solar irradiance deficit measured in 1980 by ACRIM. Astrophys. Space Sci. 170, 127–133 (1990)
M. Steinegger, M. Vazquez, J.A. Bonet, P.N. Brandt, On the energy balance of solar active regions. Astrophys. J. 461, 478–498 (1996). doi:10.1086/177075
F. Steinhilber, Total solar irradiance since 1996: is there a long-term variation unrelated to solar surface magnetic phenomena? Astron. Astrophys. 523, A39 (2010). doi:10.1051/0004-6361/2008111446
F. Steinhilber, J. Beer, C. Fröhlich, Total solar irradiance during the Holocene. Geophys. Res. Lett. (2009). doi:10.1029/2009GL040142
F. Steinhilber, J. Abreu, J. Beer, K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. (2010)
L. Svalgaard, E.W. Cliver, Long-term geomagnetic indices and their use in inferring solar wind parameters in the past. Adv. Space Res. 40, 1112–1120 (2007). doi:10.1016/j.asr.2007.06.066
K.F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, H. Paquette, Solar magnetic activity and total irradiance since the maunder minimum. Sol. Phys. 246, 309–326 (2007). doi:10.1007/s11207-007-9047-x
A.G. Tlatov, A.A. Pevtsov, J. Singh, A new method of calibration of photographic plates from three historic data sets. Sol. Phys. 255, 239–251 (2009). doi:10.1007/s11207-009-9326-9
Y.C. Unruh, S.K. Solanki, M. Fligge, Modelling solar irradiance variations: comparison with observations, including line-ratio variations. Space Sci. Rev. 94, 145–152 (2000)
R.A. Viereck, M. Snow, M.T. Deland, M. Weber, L. Puga, D. Bouwer, Trends in solar UV and EUV irradiance: an update to the MgII Index and a comparison of proxies and data to evaluate trends of the last 11-year solar cycle. in AGU Fall Meeting: GC21B-0877 (2010)
Y.M. Wang, J.L. Lean, N.R. Sheeley, Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005). doi:10.1086/429689
T. Wenzler, Reconstruction of solar irradiance variations in cycles 21-23 based on surface magnetic fields. Ph.D. thesis, ETH Nr. 16199, Eidgenössische Technische Hochschule, Zürich, 2005
T. Wenzler, S.K. Solanki, N.A. Krivova, Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophys. Res. Lett. (2009). doi:10.1029/2009GL037519
T. Wenzler, S.K. Solanki, N.A. Krivova, C. Fröhlich, Reconstruction of solar irradiance variations in cycles 21-23 based on surface magnetic fields. Astron. Astrophys. 460, 583–595 (2006). doi:10.1051/0004-6361:20065752
R.C. Willson, Irradiance observations from SMM, UARS and ATLAS experiments, in IAU Colloquium No. 143: The Sun as a Variable Star: Solar and Stellar Irradiance Variations, ed. by J. Pap, C. Fröhlich, H.S. Hudson, S. Solanki (Cambridge University Press, Cambridge, 1994), pp. 54–62
R.C. Willson, Total solar irradiance trend during solar cycles 21 and 22. Science 277, 1963–1965 (1997). See also comment by R. Kerr on page 1923 of the same issue of Science
R.C. Willson, The ACRIMSAT/ACRIM III experiment: extending the precision, long-term total solar irradiance climate database. Earth Obs. 13, 14–17 (2001)
R.C. Willson, H.S. Hudson, Solar maximum mission: initial observations by the active cavity radiometer. Adv. Space Res. 1, 285–288 (1981)
R.C. Willson, A.V. Mordvinov, Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003). doi:10.1029/2002GL016038
T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27216 (2000). doi:10.1029/2000JA000051
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fröhlich, C. Total Solar Irradiance: What Have We Learned from the Last Three Cycles and the Recent Minimum?. Space Sci Rev 176, 237–252 (2013). https://doi.org/10.1007/s11214-011-9780-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-011-9780-1