Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Total Solar Irradiance: What Have We Learned from the Last Three Cycles and the Recent Minimum?

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The record of total solar irradiance (TSI) during the past 35 years shows similarities of the three solar cycles, but also important differences. During the recent minimum with an unusually long periods with no sunspots, TSI was also extremely low, namely 25% of a typical cycle amplitude lower than in 1996. Together with the values during the previous minima this points to a long-term change related to the strength of solar activity. On the other hand, activity indices as the 10.7 cm radio flux (F10.7), the CaII and MgII indices and also the Ly-α irradiance, show a much smaller decrease. This means that proxy models for TSI based on the photometric sunspot index (PSI), and on e.g. MgII index to represent faculae and network have to be complemented by a further component for the long-term change. TSI values at minima are correlated with the simultaneous values of the open magnetic field of the Sun at 1 AU and thus, these values may be used as a surrogate for the long-term change component. Such a 4-component model explains almost 85% of the variance of TSI over the three solar cycles available. This result supports also the idea that the long-term change of TSI is not due to manifestations of surface magnetism as the solar cycle modulation, but due to a change of the global temperature of Sun modulated by the strength of activity—being lower during low activity. To explain the difference between the minima in 1996 and 2008 we need a change of only 0.25 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. (2009). doi:10.1029/2009JA014299

    Google Scholar 

  • P.N. Brandt, M. Stix, H. Weinhardt, Modeling solar irradiance variations with an area dependent photometric sunspot index. Sol. Phys. 152, 119–124 (1994). doi:10.1007/BF01473193

    Article  ADS  Google Scholar 

  • G.A. Chapman, A.M. Cookson, J.J. Dobias, Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541–13548 (1996)

    Article  ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 2, 2–83 (2005)

    ADS  Google Scholar 

  • D. Crommelynck, V. Domingo, A. Fichot, C. Fröhlich, B. Penelle, J. Romero, C. Wehrli, Preliminary results from the SOVA experiment on board the European Retrievable Carrier (EURECA). Metrologia 30, 375–380 (1993)

    Article  ADS  Google Scholar 

  • D. Crommelynck, A. Fichot, R.B. Lee III, J. Romero, First realisation of the space absolute radiometric reference (SARR) during the ATLAS 2 flight period. Adv. Space Res. 16, 8–17823 (1995)

    Article  ADS  Google Scholar 

  • S. Dewitte, D. Crommelynck, S. Mekaoui, A. Joukoff, Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys. 224, 209–216 (2004). doi:10.1007/s11207-005-5698-7

    Article  ADS  Google Scholar 

  • V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi:10.1007/s11214-009-9562-1

    Article  ADS  Google Scholar 

  • I. Ermolli, S.K. Solanki, A.G. Tlatov, N.A. Krivova, R.K. Ulrich, J. Singh, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000–1009 (2009). doi:10.1088/0004-637X/698/2/1000

    Article  ADS  Google Scholar 

  • M. Fligge, S.K. Solanki, Inter-Cycle Variations of solar irradiance: sunspot areas as a pointer. Sol. Phys. 173, 427–439 (1997)

    Article  ADS  Google Scholar 

  • P.V. Foukal, J. Lean, Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347–357 (1988)

    Article  ADS  Google Scholar 

  • P.V. Foukal, J. Lean, An empirical model of total solar irradiance variation between 1874 and 1988. Science 247, 556–558 (1990)

    Article  ADS  Google Scholar 

  • P. Foukal, L. Bertello, W. Livingston, A. Pevtsov, J. Singh, A. Tlatov, R. Ulrich, A century of solar Ca II K measurements and their implications for solar UV driving of climate. Sol. Phys. 255, 229–238 (2009). doi:10.1007/s11207-009-9330-0

    Article  ADS  Google Scholar 

  • C. Fröhlich, Long-term behavior of space radiometers. Metrologia 40, 60–65 (2003)

    Article  ADS  Google Scholar 

  • C. Fröhlich, Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21. Space Sci. Rev. 125, 53–65 (2006). doi:10.1007/s11214-006-9046-5

    ADS  Google Scholar 

  • C. Fröhlich, Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 501, 27–30 (2009a). doi:10.1051/0004-6361/200912318

    Article  ADS  Google Scholar 

  • C. Fröhlich, Total solar irradiance variability: what have we learned about its variability from the record of the last three solar cycles? in Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, ed. by T. Tsuda, R. Fujii, K. Shibata, M.A. Geller (Terra Publishing, Tokyo, 2009b), pp. 217–230. available at http://www.terrapub.co.jp/onlineproceedings/ste/CAWSES2007/index.html

    Google Scholar 

  • C. Fröhlich, J. Lean, The sun’s total irradiance: cycles and trends in the past two decades and associated climate change uncertainties. Geophys. Res. Lett. 25, 4377–4380 (1998)

    Article  ADS  Google Scholar 

  • C. Fröhlich, J. Lean, Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev. 12, 273–320 (2004). doi:10.1007/s00159-004-0024-1

    Article  ADS  Google Scholar 

  • C. Fröhlich, J.M. Pap, H.S. Hudson, Improvement of the photometric sunspot index and changes of disk-integrated sunspot contrast with time. Sol. Phys. 152, 111–118 (1994)

    Article  ADS  Google Scholar 

  • C. Fröhlich, D. Crommelynck, C. Wehrli, M. Anklin, S. Dewitte, A. Fichot, W. Finsterle, A. Jiménez, A. Chevalier, H.J. Roth, In-flight performances of VIRGO solar irradiance instruments on SOHO. Sol. Phys. 175, 267–286 (1997)

    Article  ADS  Google Scholar 

  • C. Fröhlich, A four-component proxy model for total solar irradiance calibrated during solar cycles 21–23. (2011, submitted) preprint available at ftp://ftp.pmodwrc.ch/pub/Claus/EAST-WS/caosp_frohlich.pdf

  • J.W. Harvey, D. Branston, C.J. Henney, C.U. Keller, SOLIS and GONG Teams, seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. 659, 177–180 (2007). doi:10.1086/518036

    Article  ADS  Google Scholar 

  • K. Harvey, Irradiance models based on solar magnetic field observations, in The Sun as a Variable Star: Solar and Stellar Irradiance Variations, ed. by J.M. Pap, C. Fröhlich, H.S. Hudson, S.K. Solanki (Cambridge University Press, Cambridge, 1994), pp. 217–225

    Google Scholar 

  • D.F. Heath, B.M. Schlesinger, The Mg-280 nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986)

    Article  ADS  Google Scholar 

  • D.V. Hoyt, H.L. Kyle, J.R. Hickey, R.H. Maschhoff, The NIMBUS-7 solar total irradiance: a new algorithm for its derivation. J. Geophys. Res. 97, 51–63 (1992)

    Article  ADS  Google Scholar 

  • H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–218 (1982)

    ADS  Google Scholar 

  • P.G. Judge, S.H. Saar, The Outer Solar Atmosphere during the maunder minimum: a stellar perspective. Astrophys. J. 663, 643–656 (2007). doi:10.1086/513004

    Article  ADS  Google Scholar 

  • G. Kopp, G. Lawrence, The total irradiance monitor (TIM): instrument design. Sol. Phys. 230, 91–109 (2005). doi:10.1007/s11207-005-7446-4

    Article  ADS  Google Scholar 

  • N.A. Krivova, L. Balmaceda, S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007). doi:10.1051/0004-6361:20066725

    Article  ADS  Google Scholar 

  • N.A. Krivova, S.K. Solanki, L. Floyd, Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys. 452, 631–639 (2006). doi:10.1051/0004-6361:20064809

    Article  ADS  Google Scholar 

  • N.A. Krivova, S.K. Solanki, T. Wenzler, ACRIM-gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? Geophys. Res. Lett. (2009). doi:10.1029/2009GL040707

  • N.A. Krivova, L.E.A. Vieira, S.K. Solanki, Reconstruction of solar spectral irradiance since the maunder minimum. J. Geophys. Res. (2010, in press). doi:10.1029/2010JA015431

  • N.A. Krivova, S.K. Solanki, M. Fligge, Y.C. Unruh, Reconstruction of solar total and spectral irradiance variations in cycle 23: is solar surface magnetism the cause? Astron. Astrophys. 399, 1–4 (2003)

    Article  ADS  Google Scholar 

  • J. Lean, J. Beer, R. Bradley, Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995)

    Article  ADS  Google Scholar 

  • R.B. Lee III, M.A. Gibson, R.S. Wilson, S. Thomas, Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res. 100, 1667–1675 (1995)

    Article  ADS  Google Scholar 

  • W. Livingston, M. Penn, Are sunspots different during this solar minimum? EOS Trans. 90, 257–258 (2009). doi:10.1029/2009EO300001

    Article  ADS  Google Scholar 

  • W. Livingston, L. Wallace, The Sun’s immutable basal quiet atmosphere. Sol. Phys. 212, 227–237 (2003)

    Article  ADS  Google Scholar 

  • M. Lockwood, Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. R. Soc. A 466, 303–329 (2010). doi:10.1098/rspa.2009.0519

    Article  ADS  Google Scholar 

  • M. Lockwood, C. Fröhlich, Recent oppositely directed trends in solar climate forcing and the global mean surface air temperature. Proc. R. Soc. A 463, 2447–2460 (2007). doi:10.1098/rspa.2007.1880

    Article  ADS  Google Scholar 

  • M. Lockwood, C. Fröhlich, Recent oppositely-directed trends in solar climate forcings and the global mean surface air temperature. II. Different reconstructions of the total solar irradiance variation and dependence on response timescale. Proc. R. Soc. A 464, 1367–1385 (2008). doi:10.1098/rspa.2007.0347

    Article  ADS  Google Scholar 

  • M. Lockwood, M. Owens, A.P. Rouillard, Excess open solar magnetic flux from satellite data. 1. Analysis of the third perihelion Ulysses pass. J. Geophys. Res. (2009a). doi:10.1029/2009JA014449

  • M. Lockwood, M. Owens, A.P. Rouillard, Excess open solar magnetic flux from satellite data. 2. A survey of kinematic effects. J. Geophys. Res. (2009b). doi:10.1029/2009JA014450

  • M.R. Luther, R.B. Lee III, B.R. Barkstrom, J.E. Cooper, R.D. Cess, C.H. Duncan, Solar calibration results from two earth radiation budget experiment nonscanner instruments. Appl. Opt. 25, 540–545 (1986)

    Article  ADS  Google Scholar 

  • S.K. Mathew, V. Martínez Pillet, S.K. Solanki, N.A. Krivova, Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase. Astron. Astrophys. 465, 291–304 (2007). doi:10.1051/0004-6361:20066356

    Article  ADS  Google Scholar 

  • A. Ortiz, Solar cycle evolution of the contrast of small photospheric magnetic elements. Adv. Space Res. 35, 350–360 (2005). doi:10.1016/j.asr.2005.03.014

    Article  ADS  Google Scholar 

  • A. Pierce, Limb darkening, in Allen’s Astrophysical Quantities, 4th edn. ed. by A. Cox (Springer, New York, 2000), pp. 355–357. Chap. 14.7

    Google Scholar 

  • A.P. Rouillard, M. Lockwood, I. Finch, Centennial changes in the solar wind speed and in the open solar flux. J. Geophys. Res. (2007). doi:10.1029/2006JA012130

  • N. Scafetta, Climate change and its causes, a discussion about some key issues, in SPPI Original Paper (Science and Public Policy Institute, Haymarket, 2010), pp. 1–56. http://scienceandpublicpolicy.org/images/stories/papers/originals/climate_change_cause.pdf

    Google Scholar 

  • N. Scafetta, R.C. Willson, ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys. Res. Lett. (2009). doi:10.1029/2008GL036307

  • S.K. Solanki, N.A. Krivova, T. Wenzler, Irradiance models. Adv. Space Res. 35, 376–383 (2005). doi:10.1016/j.asr.2004.12.077

    Article  ADS  Google Scholar 

  • M. Steinegger, P.N. Brandt, J. Pap, W. Schmidt, Sunspot photometry and the total solar irradiance deficit measured in 1980 by ACRIM. Astrophys. Space Sci. 170, 127–133 (1990)

    Article  ADS  Google Scholar 

  • M. Steinegger, M. Vazquez, J.A. Bonet, P.N. Brandt, On the energy balance of solar active regions. Astrophys. J. 461, 478–498 (1996). doi:10.1086/177075

    Article  ADS  Google Scholar 

  • F. Steinhilber, Total solar irradiance since 1996: is there a long-term variation unrelated to solar surface magnetic phenomena? Astron. Astrophys. 523, A39 (2010). doi:10.1051/0004-6361/2008111446

    Article  ADS  Google Scholar 

  • F. Steinhilber, J. Beer, C. Fröhlich, Total solar irradiance during the Holocene. Geophys. Res. Lett. (2009). doi:10.1029/2009GL040142

  • F. Steinhilber, J. Abreu, J. Beer, K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. (2010)

  • L. Svalgaard, E.W. Cliver, Long-term geomagnetic indices and their use in inferring solar wind parameters in the past. Adv. Space Res. 40, 1112–1120 (2007). doi:10.1016/j.asr.2007.06.066

    Article  ADS  Google Scholar 

  • K.F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, H. Paquette, Solar magnetic activity and total irradiance since the maunder minimum. Sol. Phys. 246, 309–326 (2007). doi:10.1007/s11207-007-9047-x

    Article  ADS  Google Scholar 

  • A.G. Tlatov, A.A. Pevtsov, J. Singh, A new method of calibration of photographic plates from three historic data sets. Sol. Phys. 255, 239–251 (2009). doi:10.1007/s11207-009-9326-9

    Article  ADS  Google Scholar 

  • Y.C. Unruh, S.K. Solanki, M. Fligge, Modelling solar irradiance variations: comparison with observations, including line-ratio variations. Space Sci. Rev. 94, 145–152 (2000)

    ADS  Google Scholar 

  • R.A. Viereck, M. Snow, M.T. Deland, M. Weber, L. Puga, D. Bouwer, Trends in solar UV and EUV irradiance: an update to the MgII Index and a comparison of proxies and data to evaluate trends of the last 11-year solar cycle. in AGU Fall Meeting: GC21B-0877 (2010)

  • Y.M. Wang, J.L. Lean, N.R. Sheeley, Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005). doi:10.1086/429689

    Article  ADS  Google Scholar 

  • T. Wenzler, Reconstruction of solar irradiance variations in cycles 21-23 based on surface magnetic fields. Ph.D. thesis, ETH Nr. 16199, Eidgenössische Technische Hochschule, Zürich, 2005

  • T. Wenzler, S.K. Solanki, N.A. Krivova, Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophys. Res. Lett. (2009). doi:10.1029/2009GL037519

  • T. Wenzler, S.K. Solanki, N.A. Krivova, C. Fröhlich, Reconstruction of solar irradiance variations in cycles 21-23 based on surface magnetic fields. Astron. Astrophys. 460, 583–595 (2006). doi:10.1051/0004-6361:20065752

    Article  ADS  Google Scholar 

  • R.C. Willson, Irradiance observations from SMM, UARS and ATLAS experiments, in IAU Colloquium No. 143: The Sun as a Variable Star: Solar and Stellar Irradiance Variations, ed. by J. Pap, C. Fröhlich, H.S. Hudson, S. Solanki (Cambridge University Press, Cambridge, 1994), pp. 54–62

    Google Scholar 

  • R.C. Willson, Total solar irradiance trend during solar cycles 21 and 22. Science 277, 1963–1965 (1997). See also comment by R. Kerr on page 1923 of the same issue of Science

    Article  ADS  Google Scholar 

  • R.C. Willson, The ACRIMSAT/ACRIM III experiment: extending the precision, long-term total solar irradiance climate database. Earth Obs. 13, 14–17 (2001)

    Google Scholar 

  • R.C. Willson, H.S. Hudson, Solar maximum mission: initial observations by the active cavity radiometer. Adv. Space Res. 1, 285–288 (1981)

    Article  ADS  Google Scholar 

  • R.C. Willson, A.V. Mordvinov, Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003). doi:10.1029/2002GL016038

    Article  ADS  Google Scholar 

  • T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27216 (2000). doi:10.1029/2000JA000051

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Fröhlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, C. Total Solar Irradiance: What Have We Learned from the Last Three Cycles and the Recent Minimum?. Space Sci Rev 176, 237–252 (2013). https://doi.org/10.1007/s11214-011-9780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9780-1

Keywords