Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiple-index approach to multiple autoregressive time series model

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Time series which have more than one time dependent variable require building an appropriate model in which the variables not only have relationships with each other, but also depend on previous values in time. Based on developments for a sufficient dimension reduction, we investigate a new class of multiple time series models without parametric assumptions. First, for the dependent and independent time series, we simply use a univariate time series central subspace to estimate the autoregressive lags of the series. Secondly, we extract the successive directions to estimate the time series central subspace for regressors which include past lags of dependent and independent series in a mutual information multiple-index time series. Lastly, we estimate a multiple time series model for the reduced directions. In this article, we propose a unified estimation method of minimal dimension using an Akaike information criterion, for situations in which the dimension for multiple regressors is unknown. We present an analysis using real data from the housing price index showing that our approach is an alternative for multiple time series modeling. In addition, we check the accuracy for the multiple time series central subspace method using three simulated data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cryer, J., Chan, K.S.: Time Series Analysis with Applications in R, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  • Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York (2003)

    Book  MATH  Google Scholar 

  • Härdle, W., Tsybakov, A., Yang, L.: Nonparametric vector autoregression. J. Stat. Plan. Inference 12, 153–172 (1998)

    Google Scholar 

  • Li, J., Xia, Y., Palta, M., Shankar, A.: Impact of unknown covariance structures in semiparametric models for longitudinal data: an application to Wisconsin diabetes data. Comput. Stat. Data Anal. 53, 4186–4197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J., Zhang, W.: A semiparametric threshold model for censored longitudinal data analyses. J. Am. Stat. Assoc. 106, 685–696 (2011)

    Article  MATH  Google Scholar 

  • Ng, S., Perron, P.: A note on selection of time series models. Oxf. Bull. Econ. Stat. 67, 115–134 (2005)

    Article  Google Scholar 

  • Park, J.-H.: Analyzing nonlinear time series with central subspace. J. Stat. Comput. Simul. (2011, in press). doi:10.1080/00949655.2011.571688

  • Park, J.-H., Sriram, T.N., Yin, X.: Dimension reduction in time series. Stat. Sin. 20(2), 747–770 (2010)

    MathSciNet  MATH  Google Scholar 

  • Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York (1992)

    Book  MATH  Google Scholar 

  • Shummway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications, 4th edn. Springer, New York (2006)

    Google Scholar 

  • Tsay, R.S.: Analysis of Financial Time Series, 3rd edn. Wiley, New York (2010)

    Book  MATH  Google Scholar 

  • Wang, L., Yang, L.: Spline estimation of single-index models. Stat. Sin. 19, 765–783 (2009)

    MATH  Google Scholar 

  • Xia, Y., Härdle, W.: Semi-parametric estimation of partially linear single-index models. J. Multivar. Anal. 97, 1162–1184 (2006)

    Article  MATH  Google Scholar 

  • Xia, Y., Li, W.K.: On the estimation and testing of functional coefficient linear models. Stat. Sin. 9, 735–757 (1999)

    MathSciNet  MATH  Google Scholar 

  • Xia, Y., Tong, H., Li, W.K.: On extended partially linear single-index models. Biometrika 86, 831–842 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, Y., Tong, H., Li, W.K.: Single-index volatility models and estimation. Stat. Sin. 12, 785–799 (2002a)

    MathSciNet  MATH  Google Scholar 

  • Xia, Y., Tong, H., Li, W.K., Zhu, L.X.: An adaptive estimation of dimension reduction. J. R. Stat. Soc. B 64, 363–410 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ye, Z., Weiss, R.E.: Using the bootstrap to select one of a new class of dimension reduction methods. J. Am. Stat. Assoc. 98, 968–979 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, X., Cook, R.D.: Direction estimation in single-index regressions. Biometrika 92(2), 371–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoo, J.: Unified predictor hypothesis tests in sufficient dimension reduction; bootstrap approach. J. Korean Stat. Soc. 40, 217–225 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH. Multiple-index approach to multiple autoregressive time series model. Stat Comput 23, 201–208 (2013). https://doi.org/10.1007/s11222-011-9302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9302-8

Keywords