Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computer experiments with functional inputs and scalar outputs by a norm-based approach

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A framework for designing and analyzing computer experiments is presented, which is constructed for dealing with functional and scalar inputs and scalar outputs. For designing experiments with both functional and scalar inputs, a two-stage approach is suggested. The first stage consists of constructing a candidate set for each functional input. During the second stage, an optimal combination of the found candidate sets and a Latin hypercube for the scalar inputs is sought. The resulting designs can be considered to be generalizations of Latin hypercubes. Gaussian process models are explored as metamodel. The functional inputs are incorporated into the Kriging model by applying norms in order to define distances between two functional inputs. We propose the use of B-splines to make the calculation of these norms computationally feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bastos, L.S., O’Hagan, A.: Diagnostics for gaussian process emulators. Technometrics 51(4), 425–438 (2009)

    Article  MathSciNet  Google Scholar 

  • Bayarri, M.J., Berger, J.O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R.J., Paulo, R., Sacks, J., Walsh, D.: Computer model validation with functional output. Ann. Stat. 35, 1874–1906 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J. Am. Stat. Assoc. 86(416), 953–963 (1991)

    Article  MathSciNet  Google Scholar 

  • de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

  • den Hertog, D., Kleijnen, J.P.C., Siem, A.Y.D.: The correct kriging variance estimated by bootstrapping. J. Oper. Res. Soc. 57(4), 400–409 (2005)

    Article  MATH  Google Scholar 

  • Dixon, L.C.W., Szego, G.P.: The global optimization problem: an introduction. Towards Glob. Optim. 2, 1–15 (1978)

    Google Scholar 

  • Fang, K.-T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments, Computer Science and Data Analysis Series. Chapman & Hall/CRC, New York (2006)

    MATH  Google Scholar 

  • Johnson, M., Moore, L., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26, 131–148 (1990)

  • Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Leitenstorfer, F., Tutz, G.: Generalized monotonic regression based on b-splines with an application to air pollution data. Biostatistics 8, 654–673 (2007)

    Article  MATH  Google Scholar 

  • Loeppky, J.L., Sacks, J., Welch, W.J.: Choosing the sample size of a computer experiment: A practical guide. Technometrics 51(4), 366–376 (2009)

    Article  MathSciNet  Google Scholar 

  • McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  • Morris, M.: Gaussian surrogates for computer models with time-varying inputs and ouptputs. Technometrics 54, 42–50 (2012)

    Article  MathSciNet  Google Scholar 

  • Morris, M.: Maximin distance optimal designs for computer experiments with time-varying inputs and outputs. J. Stat. Plan. Inference 144, 63–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Morris, M., Mitchell, T.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43, 381–402 (1995)

    Article  MATH  Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013). ISBN 3-900051-07-0

  • Ramsay, J., Silverman, B.: Functional Data Analysis. Springer, New York (1997)

    Book  MATH  Google Scholar 

  • Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  • Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012)

    Article  Google Scholar 

  • Sacks, J., Schiller, S., Welch, W.: Design for computer experiments. Technometrics 31, 41–47 (1989a)

    Article  MathSciNet  Google Scholar 

  • Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments. Stat. Sci. 4, 409–435 (1989b)

    Article  MathSciNet  MATH  Google Scholar 

  • Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  • Shi, J.Q., Shoi, T.: Gaussian Process Regression Analysis for Functional Data. Chapman & Hall, London (2011)

    Google Scholar 

  • Shi, J.Q., Wang, B., Murray-Smith, R., Titterington, D.M.: Gaussian process functional regression modeling for batch data. Biometrics 63(3), 714–723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, M.H.Y.: Minimax designs for finite design regions. Technometrics 55(3), 346–358 (2013)

    Article  MathSciNet  Google Scholar 

  • ul Hassan, H., Fruth, J., Güner, A., Tekkaya, A.E.: Finite element simulations for sheet metal forming process with functional input for the minimization of springback. In: IDDRG conference 2013, pp. 393–398. (2013)

Download references

Acknowledgments

The authors thank Andon Iyassu and Leo Geppert for their help on editing. This paper is based on investigations of the collaborative research centre SFB 708, project C3. The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Muehlenstaedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (r 59 KB)

Supplementary material 2 (r 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muehlenstaedt, T., Fruth, J. & Roustant, O. Computer experiments with functional inputs and scalar outputs by a norm-based approach. Stat Comput 27, 1083–1097 (2017). https://doi.org/10.1007/s11222-016-9672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9672-z

Keywords