Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Data-driven stochastic inversion via functional quantization

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new methodology for solving stochastic inversion problems through computer experiments, the stochasticity being driven by a functional random variables. This study is motivated by an automotive application. In this context, the simulator code takes a double set of simulation inputs: deterministic control variables and functional uncertain variables. This framework is characterized by two features. The first one is the high computational cost of simulations. The second is that the probability distribution of the functional input is only known through a finite set of realizations. In our context, the inversion problem is formulated by considering the expectation over the functional random variable. We aim at solving this problem by evaluating the model on a design, whose adaptive construction combines the so-called stepwise uncertainty reduction methodology with a strategy for an efficient expectation estimation. Two greedy strategies are introduced to sequentially estimate the expectation over the functional uncertain variable by adaptively selecting curves from the initial set of realizations. Both of these strategies consider functional principal component analysis as a dimensionality reduction technique assuming that the realizations of the functional input are independent realizations of the same continuous stochastic process. The first strategy is based on a greedy approach for functional data-driven quantization, while the second one is linked to the notion of space-filling design. Functional PCA is used as an intermediate step. For each point of the design built in the reduced space, we select the corresponding curve from the sample of available curves, thus guaranteeing the robustness of the procedure to dimension reduction. The whole methodology is illustrated and calibrated on an analytical example. It is then applied on the automotive industrial test case where we aim at identifying the set of control parameters leading to meet the pollutant emission standards of a vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abtini, M.: Plans prédictifs à taille fixe et séquentiels pour le krigeage. Ph.D. thesis, Ecole Centrale Lyon (2018)

  • Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vazquez, E.: Sequential design of computer experiments for the estimation of a probability of failure. Stat. Comput. 22(3), 773–793 (2012)

    Article  MathSciNet  Google Scholar 

  • Bect, J., Bachoc, F., Ginsbourger, D.: A supermartingale approach to Gaussian process based sequential design of experiments. arXiv preprint arXiv:1608.01118 (2016)

  • Bolin, D., Lindgren, F.: Excursion and contour uncertainty regions for latent Gaussian models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 77(1), 85–106 (2015)

    Article  MathSciNet  Google Scholar 

  • Bonfils, A., Creff, Y., Lepreux, O., Petit, N.: Closed-loop control of a SCR system using a NO\(_{x}\) sensor cross-sensitive to NH\(_3\). IFAC Proc. Vol. 45(15), 738–743 (2012)

    Article  Google Scholar 

  • Cardot, H., Ferraty, F., Sarda, P.: Functional Linear Model. Stat. Probab. Lett. 45(1), 11–22 (1999)

    Article  MathSciNet  Google Scholar 

  • Chevalier, C.: Fast uncertainty reduction strategies relying on Gaussian process models. Ph.D. thesis (2013)

  • Chevalier, C., Ginsbourger, D.: Fast Computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp. 59–69. Springer (2013)

  • Chevalier, C., Ginsbourger, D., Bect, J., Molchanov, I.: Estimating and quantifying uncertainties on level sets using the Vorob’ev expectation and deviation with Gaussian process models. In: mODa 10–Advances in Model-Oriented Design and Analysis, pp. 35–43. Springer (2013)

  • Chevalier, C., Picheny, V., Ginsbourger, D.: Kriginv: an efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging. Comput. Stat. Data Anal. 71, 1021–1034 (2014a)

    Article  MathSciNet  Google Scholar 

  • Chevalier, C., Bect, J., Ginsbourger, D., Vazquez, E., Picheny, V., Richet, Y.: Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set. Technometrics 56(4), 455–465 (2014b)

    Article  MathSciNet  Google Scholar 

  • Chevalier, C., Emery, X., Ginsbourger, D.: Fast update of conditional simulation ensembles. Math. Geosci. 47(7), 771–789 (2015)

    Article  Google Scholar 

  • Flury, B.A.: Principal points. Biometrika 77(1), 33–41 (1990)

    Article  MathSciNet  Google Scholar 

  • French, J.P., Sain, S.R., et al.: Spatio-temporal exceedance locations and confidence regions. Ann. Appl. Stat. 7(3), 1421–1449 (2013)

    Article  MathSciNet  Google Scholar 

  • Jackson, D.A.: Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74(8), 2204–2214 (1993)

    Article  Google Scholar 

  • Janusevskis, J., Le Riche, R.: Simultaneous kriging-based estimation and optimization of mean response. J. Glob. Optim. 55(2), 313–336 (2013)

    Article  MathSciNet  Google Scholar 

  • Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Inference 134(1), 268–287 (2005)

    Article  MathSciNet  Google Scholar 

  • Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  • L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty, pp. 419–474. Springer, Berlin (2005)

    Google Scholar 

  • L’Ecuyer, P., Owen, A.B.: Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, Berlin (2009)

    Book  Google Scholar 

  • Levrard, C.: High-dimensional vector quantization: convergence rates and variable selection. Ph.D. thesis, Universite de Paris 11 (2014)

  • Luschgy, H., Pagès, G.: Greedy vector quantization. J. Approx. Theory 198, 111–131 (2015)

    Article  MathSciNet  Google Scholar 

  • Luschgy, H., Pagès, G., Wilbertz, B.: Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces. ESAIM Probab. Stat. 14, 93–116 (2010)

    Article  MathSciNet  Google Scholar 

  • Miranda, M., Bocchini, P.: Functional Quantization of stationary Gaussian and non-Gaussian random processes. In: Deodatis, G., Ellingwood, B.R., Frangopol, D.M. (eds.) Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, pp. 2785–2792. CRC Press/Balkema, London (2013)

    Chapter  Google Scholar 

  • Miranda, M.J., Bocchini, P.: A versatile technique for the optimal approximation of random processes by functional quantization. Appl. Math. Comput. 271, 935–958 (2015)

    MathSciNet  MATH  Google Scholar 

  • Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43(3), 381–402 (1995)

    Article  Google Scholar 

  • Nanty, S., Helbert, C., Marrel, A., Pérot, N., Prieur, C.: Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs. SIAM/ASA J. Uncertain. Quantif. 4(1), 636–659 (2016)

    Article  MathSciNet  Google Scholar 

  • Pagès, G.: Introduction to optimal vector quantization and its applications for numerics. Tech. rep. (2014). https://hal.archives-ouvertes.fr/hal-01034196

  • Pagès, G., Printems, J.: Functional quantization for numerics with an application to option pricing. Monte Carlo Methods Appl. mcma 11(4), 407–446 (2005)

    Article  MathSciNet  Google Scholar 

  • Pagès, G., Printems, J.: Optimal quantization for finance: from random vectors to stochastic processes. In: Bensoussan, A., Zhang, Q. (eds.) Handbook of Numerical Analysis, vol. 15, pp. 595–648. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  • Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R.T., Kim, N.H.: Adaptive designs of experiments for accurate approximation of a target region. J. Mech. Des. 132(7), 071008 (2010)

    Article  Google Scholar 

  • Pronzato, L., Müller, W.G.: Design of computer experiments: space filling and beyond. Stat. Comput. 22(3), 681–701 (2012)

    Article  MathSciNet  Google Scholar 

  • Ramsay, J.O.: Functional Data Analysis. Wiley Online Library, New York (2006)

    Google Scholar 

  • Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51 (2013)

  • Vazquez, E., Bect, J.: A sequential Bayesian algorithm to estimate a probability of failure. IFAC Proc. Vol. 42(10), 546–550 (2009)

    Article  Google Scholar 

  • Williams, B.J., Santner, T.J., Notz, W.I.: Sequential design of computer experiments to minimize integrated response functions. Stat. Sin. 10, 1133–1152 (2000)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the associate editor for their helpful comments which substantially improved this paper. We also thank the Inria Associate Team UNcertainty QUantification is ESenTIal for OceaNic & Atmospheric flows proBLEms. This work was supported by IFPEN and the OQUAIDO chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Reda El Amri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Amri, M.R., Helbert, C., Lepreux, O. et al. Data-driven stochastic inversion via functional quantization. Stat Comput 30, 525–541 (2020). https://doi.org/10.1007/s11222-019-09888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-019-09888-8

Keywords