Abstract
We define a variant of the standard Kripke semantics for intuitionistic logic, motivated by the connection between constructive logic and the Medvedev lattice. We show that while the new semantics is still complete, it gives a simple and direct correspondence between Kripke models and algebraic structures such as factors of the Medvedev lattice.
Similar content being viewed by others
References
Heyting A., Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussisischen Akademie von Wissenschaften, Physikalisch-mathematische Klasse 1930, pp. 42–56.
Jankov A.V. ‘Calculus of the weak law of the excluded middle’, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), pp. 1044–1051. (In Russian)
Jaśkowski, S., Recherches sur le système de la logique intuitioniste, Actes du Congrès International de Philosophie Scientifique VI, Philosophie des mathèmatiques, Actualitès Scientifiques et Industrielles 393, Paris, Hermann 1936, pp. 58–61.
Kleene S.C. (1945) ‘On the interpretation of intuitionistic number theory’. Journal of Symbolic Logic 10: 109–124
Kolmogorov A. (1932) ‘Zur Deutung der intuitionistischen Logik’. Mathematische Zeitschrift 35(1): 58-65
Kripke, S., ‘Semantical analysis of intuitionistic logic’. in Formal systems and recursive functions, J. N. Crossley and M. A. Dummett (eds.), North-Holland 1965, pp. 92–130.
Medvedev Y.T. (1955) ‘Degrees of difficulty of the mass problems’. Dokl. Akad. Nauk. SSSR 104(4): 501–504
Medvedev Y.T. (1962) ‘Finite problems’. Dokl. Akad. Nauk. SSSR (NS) 142(5): 1015–1018
Rose G.F. (1953) ‘Propositional calculus and realizability’. Transactions of the American Mathematical Society 75: 1–19
Skvortsova, E.Z., ‘A faithful interpretation of the intuitionistic propositional calculus by means of an initial segment of the Medvedev lattice’, Sibirsk. Math. Zh. 29(1) (1988), 171–178. (In Russian.)
Sorbi A. (1990) ‘Some remarks on the algebraic structure of the Medvedev lattice’. Journal of Symbolic Logic 55(2): 831–853
Sorbi A. (1991) ‘Embedding Brouwer algebras in the Medvedev lattice’. Notre Dame Journal of Formal Logic 32(2): 266–275
. Sorbi, A., ‘The Medvedev lattice of degrees of difficulty’, in S. B. Cooper, T. A. Slaman, and S. S.Wainer (eds.), Computability, Enumerability, Unsolvability: Directions in Recursion Theory, London Mathematical Society Lecture Notes 224, Cambridge University Press, 1996, pp. 289–312.
Terwijn S.A. (2006) ‘Constructive logic and the Medvedev lattice’. Notre Dame Journal of Formal Logic 47(1): 73–82
Terwijn S.A. (2006) ‘The Medvedev lattice of computably closed sets’. Archive for Mathematical Logic 45(2): 179–190
Terwijn, S. A., Kripke models, distributive lattices, and Medvedev degrees, in S. B. Cooper, B. Lówe, L. Torenvliet (eds.), New Computational Paradigms, Proceedings of Computability in Europe (CiE 2005), Lecture Notes in Computer Science 3526, Springer, 2005, pp. 486–494.
. Troelstra, A. S., and D. van Dalen, Constructivism in Mathematics, Vol. I, Studies in logic and the foundations of mathematics Vol. 121, North-Holland, 1988.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Terwijn, S.A. Kripke Models, Distributive Lattices, and Medvedev Degrees. Stud Logica 85, 319–332 (2007). https://doi.org/10.1007/s11225-007-9054-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-007-9054-9