Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Theories of Truth without Standard Models and Yablo’s Sequences

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The aim of this paper is to show that it’s not a good idea to have a theory of truth that is consistent but ω-inconsistent. In order to bring out this point, it is useful to consider a particular case: Yablo’s Paradox. In theories of truth without standard models, the introduction of the truth-predicate to a first order theory does not maintain the standard ontology. Firstly, I exhibit some conceptual problems that follow from so introducing it. Secondly, I show that in second order theories with standard semantics the same procedure yields a theory that doesn’t have models. So, while having an ω- inconsistent theory is a bad thing, having an unsatisfiable theory of truth is actually worse. This casts doubts on whether the predicate in question is, after all, a truthpredicate for that language. Finally, I present some alternatives to prove an inconsistency adding plausible principles to certain theories of truth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beall J.C.: ‘Is Yablo’s Paradox Non-Circular’. Analysis 61, 176–187 (2001)

    Article  Google Scholar 

  2. Bueno O., Colyvan M.: ‘Paradox without Satisfaction’. Analysis 63, 152–156 (2003)

    Article  Google Scholar 

  3. Feferman S.: ‘Reflecting on Incompleteness’. Journal of Symbolic Logic 56(1), 1–49 (1991)

    Article  Google Scholar 

  4. Forster, Th., ‘The Significance of Yablo’s Paradox without Self-Reference’, 1996. Available at URL = <http://www.dpmms.cam.ac.uk/-tf>.

  5. Hablach V.: ‘A System of Complete and Consistent Truth’. Notre Dame Journal of Formal Logic 35, 353–370 (1994)

    Google Scholar 

  6. Hablach V.: ‘Conservative Theories of Classical Truth’. Studia Logica 62, 353–370 (1999)

    Article  Google Scholar 

  7. Halbach V., Horsten L.: ‘The Deflationist’s Axioms for Truth’. In: Beall, J.C., Armour-Garb, B. (eds) Deflationism and Paradox, pp. 203–217. Oxford University Press, Oxford (2005)

    Google Scholar 

  8. Halbach, V., ‘Axiomatic Theories of Truth’, in E.N. Zalta, (ed.), Stanford Encyclopedia of Philosophy, available at URL = <http://plato.stanford.edu/entries/truth-axiomatic>, 2007.

  9. Kaye R.: Models of Peano Arithmetic. Oxford University Press, Oxford (1991)

    Google Scholar 

  10. Ketland J.: ‘Deflationism and Tarski’s Paradise’. Mind 108(429), 69–94 (1999)

    Article  Google Scholar 

  11. Ketland J.: ‘Yablo’s Paradox and ω-inconsistency’. Synthese 145, 295–302 (2005)

    Article  Google Scholar 

  12. Leitgeb H.: ‘Theories of Truth which have no Standard Models’. Studia Logica 68, 69–87 (2001)

    Article  Google Scholar 

  13. Leitgeb H.: ‘What is a Self-Referential Sentence? Critical Remarks on the Alleged (Non-)Circularity of Yablo’s Paradox’. Logique et Analyse 177-178, 3–14 (2002)

    Google Scholar 

  14. McGee V.: ‘How Truthlike Can a Predicate Be? A Negative Result’. Journal of Philosophical Logic 14, 399–410 (1985)

    Article  Google Scholar 

  15. McGee V.: ‘How We Learn Mathematical Language’. Philosophical Review 106, 35–68 (1997)

    Article  Google Scholar 

  16. Priest G.: ‘Yablo’s Paradox’. Analysis 57(4), 236–242 (1997)

    Article  Google Scholar 

  17. Shapiro S.: Foundations without Foundationalism: A case for Second-Order Logic. Oxford Clarendon Press, Oxford (1991)

    Google Scholar 

  18. Sheard M.: ‘Weak and Strong Theories of Truth’. Studia Logica 68, 89–101 (2001)

    Article  Google Scholar 

  19. Simpson S.: Subsystems of Second Order Peano Arithmetic. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  20. Sorensen R.: ‘Yablo’s Paradox and Kindred Infinite Liars’. Mind 107, 137–155 (1998)

    Article  Google Scholar 

  21. Uzquiano, G., ‘An Infinitary Paradox of Denotation’, Analysis, 64 (2004), 138–131.

  22. Visser A.: ‘Semnatics and the liar paradox’. In: Gabbay, D., Guenther, F. (eds) Handbook of Philosophical Logic, pp. 149–204. Kluwer, Dordretch (2004)

    Google Scholar 

  23. Yablo S.: ‘Paradox without Self-Reference’. Analysis 53, 251–252 (1993)

    Article  Google Scholar 

  24. Yablo S.: ‘A Reply to New Zeno’. Analysis 60, 148–151 (2000)

    Article  Google Scholar 

  25. Yablo S.: ‘Circularity and Paradox’. In: Hendricks, V., Pedersen, S., Bolander, T. (eds) Self-reference, pp. 139–157. CSLI Press, Stanford (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Alejandro Barrio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrio, E.A. Theories of Truth without Standard Models and Yablo’s Sequences. Stud Logica 96, 375–391 (2010). https://doi.org/10.1007/s11225-010-9289-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-010-9289-8

Keywords