Abstract
We introduce the logics GLP Λ, a generalization of Japaridze’s polymodal provability logic GLP ω where Λ is any linearly ordered set representing a hierarchy of provability operators of increasing strength. We shall provide a reduction of these logics to GLP ω yielding among other things a finitary proof of the normal form theorem for the variable-free fragment of GLP Λ and the decidability of GLP Λ for recursive orderings Λ. Further, we give a restricted axiomatization of the variable-free fragment of GLP Λ.
Similar content being viewed by others
References
Beklemishev, L., Positive provability logic for uniform reflection principles, ArXiv:1304.4396 [math.LO], 2013.
Beklemishev L.D.: Provability algebras and proof-theoretic ordinals, I. Annals of Pure and Applied Logic 128, 103–124 (2004)
Beklemishev, L. D., Veblen hierarchy in the context of provability algebras, in P. Hájek, L. Valdés-Villanueva, and D. Westerståhl (eds.), Logic, Methodology and Philosophy of Science, Proceedings of the Twelfth International Congress, Kings College Publications, London, 2005, pp. 65–78.
Beklemishev, L. D., The Worm principle, in Z. Chatzidakis, P. Koepke, and W. Pohlers (eds.), Logic Colloquium 2002, Lecture Notes in Logic 27. ASL Publications, 2006, pp. 75–95.
Beklemishev L.D.: Kripke semantics for provability logic GLP. Annals of Pure and Applied Logic 161(6), 737–744 (2010)
Beklemishev, L. D., On the Craig interpolation and the fixed point properties of GLP, in S. Feferman et al. (eds.), Proofs, Categories and Computations. Essays in honor of G. Mints, Tributes, College Publications, London, 2010, pp. 49–60. Preprint: Logic Group Preprint Series 262, University of Utrecht, Dec 2007.
Beklemishev, L. D., A simplified proof of the arithmetical completeness theorem for the provability logic GLP, Trudy Matematicheskogo Instituta imeni V.A. Steklova 274(3):32–40, 2011. English translation: Proceedings of the Steklov Institute of Mathematics 274(3):25–33, 2011.
Beklemishev, L. D., and D. Gabelaia, Topological completeness of the provability logic GLP, ArXiv: 1106.5693v1 [math.LO], 2011, pp. 1–26. To appear in Annals of Pure and Applied Logic.
Beklemishev, L. D., and D. Gabelaia, Topological completeness of the provability logic GLP. Annals of Pure and Applied Logic, 2013, doi:10.1016/j.apal.2013.06.008
Beklemishev L.D., Joosten J.J., Vervoort M.: A finitary treatment of the closed fragment of Japaridze’s provability logic. Journal of Logic and Computation 15, 447–463 (2005)
Boolos G.S.: The Logic of Provability. Cambridge University Press, Cambridge (1993)
Chagrov A.V., Rybakov M.N.: How many variables does one need to prove pspace-hardness of modal logics. Advances in Modal Logic 4, 71–82 (2003)
Dashkov E.V.: On the positive fragment of the polymodal provability logic GLP. Mathematical Notes 91(3-4), 318–333 (2012)
Feferman S., Spector C.: Incompleteness along paths in progressions of theories. Journal of Symbolic Logic 27, 383–390 (1962)
Fernández-Duque, D., The polytopologies of transfinite provability logic, ArXiv1207.6595 [math.LO], 2012.
Fernández-Duque, D., and J. J. Joosten, Kripke models of transfinite provability logic, in Advances in Modal Logic, vol. 9, College Publications, London, 2012, pp. 185–199.
Fernández-Duque, D., and J. J. Joosten, Hyperations, Veblen progressions and transfinite iteration of ordinal functions, Annals of Pure and Applied Logic, 2013. Accepted for publication.
Fernández-Duque D., Joosten J.J.: Models of transfinite provability logics. Journal of Symbolic Logic 78(2), 543–561 (2013)
Fernández-Duque, D., and J. J. Joosten, The omega-rule interpretation of transfinite provability logic, ArXiv1205.2036 [math.LO], 2013.
Fernández-Duque, D., and J. J. Joosten, Well-orders in the transfinite Japaridze algebra, ArXiv1212.3468 [math.LO], 2013.
Fernández-Duque, D., and J. J. Joosten, Turing progressions and their well-orders, in How the world computes, Lecture Notes in Computer Science, Springer, Berlin, 2012, pp. 212–221.
Icard III, T. F., Models of the Polymodal Provability Logic, Master’s thesis, ILLC, Universiteit van Amsterdam, 2008.
Icard III T.F.: A topological study of the closed fragment of GLP. Journal of Logic and Computation 21, 683–696 (2011)
Ignatiev K.N.: On strong provability predicates and the associated modal logics. The Journal of Symbolic Logic 58, 249–290 (1993)
Japaridze, G. K., The modal logical means of investigation of provability, Ph.D. thesis, Moscow State University, 1986. In Russian.
Joosten, J. J., Interpretability Formalized, Ph.D. thesis, Utrecht University, 2004.
Pakhomov, F., On the complexity of the closed fragment of Japardize’s provability logic, in T. Bolander, T. Braüner, S. Ghilardi, and L. Moss (eds.), 9-th Advances in Modal Logic, AiML 2012, Short Presentations, 2012, pp. 56–59.
Shamkanov, D. S., Interpolation properties of provability logics GL and GLP, Trudy Matematicheskogo Instituta imeni V.A. Steklova 274(3):329–342, 2011. English translation: Proceedings of the Steklov Institute of Mathematics 274(3):303–316, 2011.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Beklemishev, L.D., Fernández-Duque, D. & Joosten, J.J. On Provability Logics with Linearly Ordered Modalities. Stud Logica 102, 541–566 (2014). https://doi.org/10.1007/s11225-013-9490-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-013-9490-7