Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimizing Monte Carlo radiosity on graphics hardware

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The radiosity method is usually employed for the rendering of highly realistic synthetic images. In this paper we present an implementation of the Monte Carlo radiosity algorithm on the GPU using CUDA. Our proposal is based on the partition of the scene into sub-scenes to be processed in parallel to exploit the graphics card structure. The convex partition method employed permits the exploitation of data locality and the optimization of the ray shooting procedure due to the minimization of the number of objects to be tested in the intersection calculation. The results are good in terms of execution times, increasing the flexibility of previous solutions and demonstrating that the GPU can outperform the CPU results even for non-regular algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amor M, Sanjurjo JR, Padrón EJ, Doallo R (2004) Progressive radiosity method on clusters using a new clipping algorithm. Int J High Perform Comput Netw (IJHPCN) 1:55–63

    Article  MATH  Google Scholar 

  2. ATI: ATI Stream Computing (2009)

  3. Cheslack-Postava E, Wang R, Akerlund O, Pellacini F (2008) Fast realistic lighting and material design using nonlinear cut approximation. ACM Trans Graph (TOG) 27(5):128

    Article  Google Scholar 

  4. Dachsbacher C, Stamminger M, Drettakis G, Durand F (2007) Implicit visibility and antiradiance for interactive global illumination. ACM Trans Graph (TOG) 26(3):61

    Article  Google Scholar 

  5. Dutre P, Bekaert P, Bala K (2006) Advanced global illumination, 2nd edn. AK Peters, Wellesley

    Google Scholar 

  6. Havran V (2001) Heuristic ray shooting algorithms. Ph.D. thesis, Czech Technical University in Prague

  7. Laine S, Saransaari H, Kontkanen J, Lehtinen J, Aila T (2007) Increment instant radiosity for real-time indirect illumination. In: Proc. eurographics symposium on rendering, pp 277–286

  8. Neumann L, Purgathofer W, Tobler RF, Neumann A, Elias PP, Feda M, Pueyo X (1995) The stochastic ray method for radiosity. In: Proc. of the rendering techniques, pp 206–218

  9. NVIDIA: NVIDIA CUDA compute unified device architecture. Programming guide (2008)

  10. Ritschel T, Grosh T, Kim MH, Seidel H-P, Dachsbacher C, Kautz J (2008) Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans Graph (TOG) 27(5):129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Sanjurjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanjurjo, J.R., Amor, M., Bóo, M. et al. Optimizing Monte Carlo radiosity on graphics hardware. J Supercomput 58, 177–185 (2011). https://doi.org/10.1007/s11227-009-0353-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-009-0353-y

Keywords