Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Molecular solutions of the RSA public-key cryptosystem on a DNA-based computer

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The RSA public-key cryptosystem is an algorithm that converts a plain-text to its corresponding cipher-text, and then converts the cipher-text back into its corresponding plain-text. In this article, we propose five DNA-based algorithms—parallel adder, parallel subtractor, parallel multiplier, parallel comparator, and parallel modular arithmetic—that construct molecular solutions for any (plain-text, cipher-text) pair for the RSA public-key cryptosystem. Furthermore, we demonstrate that an eavesdropper can decode an encrypted message overheard with the linear steps in the size of the encrypted message overheard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key crytosystem. Commun ACM 21:120–126

    Article  MathSciNet  MATH  Google Scholar 

  2. Feynman RP (1961) There’s plenty of room at the bottom. In: Gilbert DH (ed) Minaturization. Reinhold, New York, pp 282–296

    Google Scholar 

  3. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  4. Lipton RJ (1995) DNA solution of hard computational problems. Science 268:542–545

    Article  Google Scholar 

  5. Quyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449

    Article  Google Scholar 

  6. Amos M (1997) DNA computation. PhD thesis, Department of Computer Science, the University of Warwick

  7. Harju T, Li C, Petre I, Rozenberg G (2005) Parallelism in gene assembly. In: DNA computing. Lecture notes in computer science, vol 3384, p 686. doi:10.1007/11493785_12

    Google Scholar 

  8. Thachuk C, Manuch J, Rafiey A, Mathieson L-A, Stacho L, Condon A (2010) An algorithm for the energy barrier problem without pseudoknots and temporary arcs. Pac Symp Biocomput 15:108–119

    Google Scholar 

  9. Zadeh JN, Wolfe BR, Pierce NA (2010) Nucleic acid sequence design via efficient ensemble defect optimization. J Comput Chem. doi:10.1002/jcc.21633

    Google Scholar 

  10. Xiao D, Li W, Zhang Z, He L (2005) Solving the maximum cut problems in the Adleman–Lipton model. Biosystems 82:203–207

    Article  Google Scholar 

  11. Yeh C-W, Chu C-P, Wu K-R (2006) Molecular solutions to the binary integer programming problem based on DNA computation. Biosystems 83(1):56–66

    Article  Google Scholar 

  12. Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853):1121–1125

    Article  Google Scholar 

  13. Boneh D, Dunworth C, Lipton RJ (1996) Breaking DES using a molecular computer. In: Proceedings of the 1st DIMACS workshop on DNA based computers, 1995. DIMACS series in discrete mathematics and theoretical computer science, vol 27. American Mathematical Society, Providence, pp 37–66

    Google Scholar 

  14. Adleman L, Rothemund PWK, Roweis S, Winfree E (1999) On applying molecular computation to the data encryption standard. In: The 2nd annual workshop on DNA computing, Princeton University. DIMACS series in discrete mathematics and theoretical computer science. American Mathematical Society, Providence, pp 31–44

    Google Scholar 

  15. Zhang DY, Seelig G (2011) DNA-based fixed gain amplifiers and linear classifier circuits. In: DNA 16. Lecture notes in computer science, vol 6518, p 176

    Google Scholar 

  16. Yeh C-W, Chu C-P (2008) Molecular verification of rule-based systems based on DNA computation. IEEE Trans Knowl Data Eng 20(7):965–975

    Article  Google Scholar 

  17. Guarnieri F, Fliss M, Bancroft C (1996) Making DNA add. Science 273:220–223

    Article  Google Scholar 

  18. Ho M(S-H) (2005) Fast parallel molecular solutions for DNA-based supercomputing: the subset-product problem. Biosystems 80:233–250

    Article  Google Scholar 

  19. Ahrabian H, Nowzari-Dalini A (2004) DNA simulation of nand Boolean circuits. Adv Model Optim 6(2):33–41

    MathSciNet  MATH  Google Scholar 

  20. Schuster A (2005) DNA databases. Biosystems 81:234–246

    Article  Google Scholar 

  21. Paun G, Rozenberg G, Salomaa A (1998) DNA computing: new computing paradigms. Springer, New York. ISBN:3-540-64196-3

    MATH  Google Scholar 

  22. Boneh D, Dunworth C, Lipton RJ, Sgall J (1996) On the computational power of DNA. Discrete Appl Math 71:79–94. Special Issue on Computational Molecular Biology

    Article  MathSciNet  MATH  Google Scholar 

  23. Amos M (2005) Theoretical and experimental DNA computation. Springer, Berlin

    MATH  Google Scholar 

  24. Braich RS, Johnson C, Rothemund PWK, Hwang D, Chelyapov N, Adleman LM Solution of a satisfiability problem on a gel-based DNA computer. In: Proceedings of the 6th international conference on DNA computation. Lecture notes in computer science. Springer, Berlin

  25. Braich RS, Johnson C, Rothemund PWK, Hwang D, Chelyapov N, Adleman LM (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567):499–502

    Article  Google Scholar 

  26. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory IT-22(6):644–654

    Article  MathSciNet  Google Scholar 

  27. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26(5):1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  28. Chang W-L, Ho M, Guo M (2005) Fast parallel molecular algorithms for DNA-based computation: factoring integers. IEEE Trans Nanobiosci 4(2):149–163

    Article  Google Scholar 

  29. Li K, Zou S, Xv J (2008) Fast parallel molecular algorithms for DNA-based computation: solving the elliptic curve discrete logarithm problem over GF(2n). J Biomed Biotechnol 2008:518093. doi:10.1155/2008/518093

    Article  Google Scholar 

  30. Chang W-L, Huang S-C, Lin KW, Ho M(SH) (2009) Fast parallel DNA-based algorithms for molecular computation: discrete logarithm. J Supercomput

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weng-Long Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WL., Lin, K.W., Chen, JC. et al. Molecular solutions of the RSA public-key cryptosystem on a DNA-based computer. J Supercomput 61, 642–672 (2012). https://doi.org/10.1007/s11227-011-0627-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-011-0627-z

Keywords