Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A novel sleep scheduling scheme in green wireless sensor networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Reduction of unnecessary energy consumption is becoming a major concern in green wireless sensor networks. Sleep scheduling is one of the efficient strategies to achieve energy saving. In this paper, we propose a novel scheme for the sleep scheduling, which is based on Decentralized Partially Observable Markov Decision Process (Dec-POMDP). A sleep scheduling algorithm with online planning (Dec-POP-SSA) with respect to Dec-POMDP is also presented. In Dec-POMDP, due to the hardness of obtaining the state spaces and the reward with mold-free environment, quasi-Monte Carlo is applied to collect state spaces such that the real-time acquisition of beliefs state is achieved, and the reward is evaluated in tracking reward and coverage connectivity intensity. Instead of producing the entire plan, Dec-POP-SSA need only find actions for the current step. We also give the theoretical analysis on the upper bound for Dec-POP-SSA. The numerical experiments show that Dec-POP-SSA may receive the highest reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wei Q, Jianfeng G, Changqiao X, Hongke Z (2012) G-MER: green mobility estimation-based routing protocol in wireless sensor network. China Commun 9(5):10–21

    Google Scholar 

  2. Morreale P, Qi F, Croft P (2011) A green wireless sensor network for environmental monitoring and risk identification. Int J Sens Netw 10(1):73–82

    Article  Google Scholar 

  3. Bianzino AP, Chaudet C, Rossi D, Rougier JL (2012) A survey of green networking research. IEEE Commun Surv Tutor 14(1):3–20

    Article  Google Scholar 

  4. Chen Y, Zhang S, Xu S, Li GY (2011) Fundamental trade-offs on green wireless networks. IEEE Commun Mag 49(6):30–37

    Article  Google Scholar 

  5. Jabbar S, Minhas AA, Paul A, Rho S (2014) Multilayer cluster designing algorithm for lifetime improvement of wireless sensor networks. J Supercomput 70(1):104–132

  6. Kim YH, Han YH, Jeong YS, Park DS (2013) Lifetime maximization considering target coverage and connectivity in directional image/video sensor networks. J Supercomput 65(1):365–382

    Article  Google Scholar 

  7. Wang WN, Mi ZK, Wang B (2012) Green networking based energy efficient communications. China Commun 9(2):22–30

    Google Scholar 

  8. Zeng Y, Sreenan CJ, Xiong N, Yang LT, Park JH (2010) Connectivity and coverage maintenance in wireless sensor networks. J Supercomput 52(1):23–46

    Article  Google Scholar 

  9. Zhao Y, Wu J, Li F, Lu S (2012) On maximizing the lifetime of wireless sensor networks using virtual backbone scheduling. IEEE Trans Parallel Distrib Syst 23(8):1528–1535

    Article  Google Scholar 

  10. Nan G, Shi G, Mao Z, Li M (2012) CDSWS: coverage-guaranteed distributed sleep/wake scheduling for wireless sensor networks. EURASIP J Wirel Commun Netw 1:1–14

    Article  Google Scholar 

  11. Liu C, Wu K, Xiao Y, Sun B (2006) Random coverage with guaranteed connectivity: joint scheduling for wireless sensor networks. IEEE Trans Parallel Distrib Syst 17(6):562–575

    Article  Google Scholar 

  12. Wang L, Wei RZ, Tian ZH (2012) Cluster based node scheduling method for wireless sensor networks. Sci China Inf Sci 55(4):755–764

    Article  MATH  MathSciNet  Google Scholar 

  13. Ding Y, Wang C, Xiao L (2009) An adaptive partitioning scheme for sleep scheduling and topology control in wireless sensor networks. IEEE Trans Parallel Distrib Syst 20(9):1352–1365

    Article  Google Scholar 

  14. Yu J, Zhang Q, Yu D, Chen C, Wang G (2014) Domatic partition in homogeneous wireless sensor networks. J Netw Comput Appl 37:186–193

    Article  Google Scholar 

  15. Censor-Hillel K, Ghaffari M, Kuhn F (2014) A new perspective on vertex connectivity. Proc SODA 2014:546–561

    Google Scholar 

  16. Zhang DQ, Li D (2014) High-density randomly deployed nodes sleep scheduling algorithm in wireless sensor networks. Adv Mater Res 846:446–451

    Google Scholar 

  17. Fuemmeler JA, Veeravalli VV (2008) Smart sleeping policies for energy-efficient tracking in sensor networks. In: Networked sensing information and control. Springer, USA, pp 267–287

  18. Fuemmeler JA, Veeravalli VV (2010) Energy efficient multi-object tracking in sensor networks. IEEE Trans Signal Process 58(7):3742–3750

    Article  MathSciNet  Google Scholar 

  19. Fuemmeler JA, Atia GK, Veeravalli VV (2011) Sleep control for tracking in sensor networks. IEEE Trans Signal Process 59(9):4354–4366

    Article  MathSciNet  Google Scholar 

  20. Atia GK, Veeravalli VV, Fuemmeler JA (2011) Sensor scheduling for energy-efficient target tracking in sensor networks. IEEE Trans Signal Process 59(10):4923–4937

    Article  MathSciNet  Google Scholar 

  21. Jiang B, Ravindran B, Cho H (2013) Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor networks. IEEE Trans Mob Comput 12(4):735–747

    Article  Google Scholar 

  22. Mihaylov M, Le Borgne YA, Tuyls K, Now A (2013) Reinforcement learning for self-organizing wake-up scheduling in wireless sensor networks. In: Agents and artificial intelligence. Springer, Berlin, pp 382–396

  23. Wu F, Zilberstein S, Chen X (2011) Online planning for multi-agent systems with bounded communication. Artif Intell 175(2):487–511

    Article  MATH  MathSciNet  Google Scholar 

  24. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Parallel Comput 21(11):1783–1806

    Article  Google Scholar 

  25. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference. The 1993 High Performance Computing: New Horizons Supercomputing Symposium, Calgary, Alberta, Canada, June 349–357

  26. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J Eurogr Assoc (Comput Graphics Forum) 8(1):3–12

    Article  Google Scholar 

  27. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193

    Article  Google Scholar 

  28. Shi Z, Beard C, Mitchell K (2009) Analytical models for understanding misbehavior and MAC friendliness in CSMA networks. Perform Eval 66(9):469–487

    Article  Google Scholar 

  29. Shi Z, Beard C, Mitchell K (2013) Analytical models for understanding space, backoff, and flow correlation in CSMA wireless networks. Wirel Netw 19(3):393–409

    Article  Google Scholar 

  30. Shi Z, Beard C, Mitchell K (2011) Competition, cooperation, and optimization in multi-hop CSMA networks. In: Proceedings of the 8th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. ACM, pp 117–120

  31. Shi Z, Beard CC, Mitchell K (2007) Misbehavior and MAC friendliness in CSMA networks. In: Proceedings of WCNC, pp 355–360

  32. Shi Z, Beard C, Mitchell K (2008) Tunable traffic control for multihop CSMA networks. In: Proceedings of military communications conference, 2008, MILCOM 2008. IEEE, pp 1–7

  33. Shi Z, Gu R (2013) Efficient implementation of particle Swarm optimization algorithm. Int J Soft Comput Math Control 2(4):1–13

  34. Ragi S, Chong EKP (2013) Decentralized control of unmanned aerial vehicles for multitarget tracking. Int Conf IEEE Unmanned Aircr Syst 2013:260–268

    Google Scholar 

  35. Demchik V (2011) Pseudo-random number generators for Monte Carlo simulations on ATI graphics processing units. Comput Phys Commun 182(3):692–705

    Article  MATH  MathSciNet  Google Scholar 

  36. Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2(1):84–90

    Article  MATH  MathSciNet  Google Scholar 

  37. Gmez-Prez D, Hofer R, Niederreiter H (2013) A general discrepancy bound for hybrid sequences involving Halton sequences. Unif Distrib Theory 8(1):31–45

    MathSciNet  Google Scholar 

  38. Levy BC (2008) Principles of signal detection and parameter estimation. Springer, New York, USA

  39. Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301):13–30

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank National Natural Science Foundation of China (Grant No: 61072080, No. U1405255). Fujian Normal University Innovative Research Team (No. IRTL1207). The Natural Science Foundation of Fujian Province (No: 2013J01222, J01223, 2013J01221). The Education Department of Fujian Province science and technology project (JA13215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xu, L., Zhou, S. et al. A novel sleep scheduling scheme in green wireless sensor networks. J Supercomput 71, 1067–1094 (2015). https://doi.org/10.1007/s11227-014-1354-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1354-z

Keywords