Abstract
Unmanaged resource contention in cloud computing environments can cause problems such as performance interference, service quality degradation, and consequently service agreements violation. Performance isolation is an indispensable remedy solution for the mentioned challenges. Dynamic analysis and monolithic management of the performance isolation from the perspective of cloud computing services with different operating entities is a challenging problem. This issue has not been addressed in previous studies, despite its significance. Most previous researches have focused on particular algorithms and methods for specific application scenarios, and lack sufficient descriptions about analysis and management aspects of the performance isolation. Due to the importance of this issue, this paper aims to make an in-depth investigation of this problem and propose a novel approach in order to dynamic analysis and management of the performance isolation for cloud computing services. Proposed approach employs a novel architectural framework, named DPIM, which enables service providers to realize different isolation methods and enforces performance isolation transparently. The experimental results demonstrate the practicality and effectiveness of the proposed approach and related framework for performance isolation management in different service environments, with different operating entities.











Similar content being viewed by others
References
Durao F, Carvalho JFS, Fonseka A, Garcia VC (2014) A systematic review on cloud computing. J Supercomput 68(3):1321–1346. doi:10.1007/s11227-014-1089-x
Rimal BP, Jukan A, Katsaros D, Goeleven Y (2011) Architectural requirements for cloud computing systems: an enterprise cloud approach. J Grid Comput 9(1):3–26. doi:10.1007/s10723-010-9171-y
AlJahdali H, Albatli A, Garraghan P, Townend P, Lau L, Xu J (2014) Multi-tenancy in cloud computing. In: Proceedings of the 8th IEEE international symposium on service-oriented system engineering (SOSE), pp 344–351. doi:10.1109/SOSE.2014.50
Sureshkumar D, Kannan RJ, Purniemaa P (2013) Multi-tenancy deploy model and issues in SAAS: a survey. J Comput Sci Appl (TIJCSA) 2(08):41–49
Ferretti S, Ghini V, Panzieri F, Pellegrini M, Turrini E (2010) Qos-aware clouds. In: Cloud Computing (CLOUD) 3rd IEEE International Conference, pp 321–328. doi:10.1109/CLOUD.2010.17
Son S, Jung G, Jun SC (2013) An SLA-based cloud computing that facilitates resource allocation in the distributed data centers of a cloud provider. J Supercomput 64(2):606–637. doi:10.1007/s11227-012-0861-z
Serrano D, Bouchenak S, Kouki Y, de Oliveira Jr FA, Ledoux T, Lejeune J, Sopena J, Arantes L, Sens P (2015) SLA guarantees for cloud services. J Future Gener Comput Syst 54:233–246. doi:10.1016/j.future.2015.03.018
He S, Guo L, Guo Y (2014) Elastic application container system: elastic web applications provisioning. Handbook of research on demand-driven Web services: theory, technologies, and applications: theory, technologies, and applications, pp 376–398
Litoiu M, Woodside M, Wong J, Ng J, Iszlai G (2010) A business driven cloud optimization architecture. In: Proceedings of the ACM symposium on applied computing, pp 380–385. doi:10.1145/1774088.1774170
Krebs R, Momm C, Kounev S (2014) Metrics and techniques for quantifying performance isolation in cloud environments. J Sci Comput Program 90:116–134
Krebs R, Loesch M, Kounev S (2014) Platform-as-a-Service architecture for performance isolated multi-tenant applications. In: Cloud Computing (CLOUD) 7th IEEE International Conference, pp 914–921. doi:10.1109/CLOUD.2014.125
Krebs R, Loesch M (2014) Comparison of request admission based performance isolation approaches in multi-tenant SaaS applications. In: Proceedings of the 4th International Conference on Cloud Computing and Service Science (CLOSER 2014)
Nathuji R, Kansal A, Ghaffarkhah A (2010) Q-clouds: managing performance interference effects for qos-aware clouds. In: Proceedings of the 5th European Conference on Computer Systems ACM, pp 237–250. doi:10.1145/1755913.1755938
Fu X, Zhou C (2015) Virtual machine selection and placement for dynamic consolidation in cloud computing environment. J Front Comput Sci 9(2):322–330. doi:10.1007/s11704-015-4286-8
Singh S, Chana I (2016) Resource provisioning and scheduling in clouds: QoS perspective. J Supercomput 72(3):926–960. doi:10.1007/s11227-016-1626-x
Guitart J, Torres J, Ayguad E (2010) A survey on performance management for internet applications. Concurr Comput: Pract Exp 22(1):68–106. doi:10.1002/cpe.1470
Bu X (2013) Autonomic management and performance optimization for cloud computing services. Dissertation, Wayne State University, Detroit
Nelson R (2013) Probability, stochastic processes, and queueing theory: the mathematics of computer performance modeling. Springer, New York
Ye J, Dongxing J, Qixin L (2013) A control theory based performance isolation framework for PaaS. In: BCGIN ’13 Proceedings of the 2013 International Conference on Business Computing and Global Informatization, pp 1070–1073. doi:10.1109/BCGIN.2013.285
Lin H, Sun K, Zhao S, Han Y (2009) Feedback-control-based performance regulation for multi-tenant applications. In: Parallel and Distributed Systems (ICPADS) 15th IEEE Conference, pp 134–141
Buschmann F, Douglas KH, Schmidt C (2007) Pattern-oriented software architecture, on patterns and pattern languages, 1st edn. Wiley, Hoboken
Gupta P (2012) Unified master service catalogue manager for cloud. J Soft Comput Eng (IJSCE) 2(3):2231–2307
Aceto G, Botta A, Donato WD, Pescap A (2013) Cloud monitoring: a survey. J Comput Netw 57(9):2093–2115. doi:10.1016/j.comnet.2013.04.001
Calero JA, Aguado JG (2015) MonPaaS: an adaptive monitoring platform as a service for cloud computing infrastructures and services. Serv Comput IEEE Trans 8(1):65–78
Meng S, Liu L (2012) Monitoring-as-a-service in the cloud. In: ICPE ’13 Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering, pp 373-374. doi:10.1145/2479871.2479929
Application Response Measurement, ARM. http://www.opengroup.org/management/arm/. Accessed Aug 2009
Java Management Extensions, JMX. http://java.sun.com/javase/technologies/core/javamanagement/. Accessed Aug 2009
Nimsoft Monitor Solution. http://www.nimsoft.com/solutions/nimsoftmonitor/cloud. Accessed 2012
Nagios.org. http://www.nagios.org. Accessed 3 Feb 2012
Amazon CloudWatch. http://aws.amazon.com/es/cloudwatch/. Accessed 2013
Cloudharmony. http://cloudharmony.com/. Accessed 1 Sept 2014
Wang W, Huang X, Qin X, Zhang W, Wei J, Zhong H (2012) Application-level cpu consumption estimation: towards performance isolation of multi-tenancy web applications. In: Cloud Computing (Cloud), 5th IEEE Conference, pp 439–446. doi:10.1109/CLOUD.2012.81
Krebs R, Spinner S, Ahmed N, Kounev S (2014) Resource usage control in multi-tenant applications. In: Cluster, cloud and grid computing, 14th IEEE/ACM international symposium, pp 122–131
Smith WD (2000) TPC-W: benchmarking an ecommerce solution
Joshi A, Kale S, Chandel S, Pal D (2015) Likert Scale: explored and explained. Br J Appl Sci Technol 7(4):396–403. doi:10.9734/BJAST/2015/14975
Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) kvm: the Linux virtual machine monitor. In: Proceedings of the Linux symposium, pp 225–230
Jones R, Netperf. Open source benchmarking software. URL: http://www.netperf.org
Walraven S, Monheim T, Truyen E, Joosen W (2012) Towards performance isolation in multi-tenant SaaS applications. In: Proceedings of the 7th ACM workshop on middleware for next generation internet computing. doi:10.1145/2405178.2405184
Shojafar M, Cordeschi N, Baccarelli E (2016) Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Trans Cloud Comput PP(99):1–14. doi:10.1109/TCC.2016.2551747
Sukwong O, Sangpetch A, Kim H.S (2012) SageShift: managing SLAs for highly consolidated cloud. In: INFOCOM proceedings IEEE, pp 208–216. doi:10.1109/INFCOM.2012.6195591
Citrix XenServer [Online]. http://www.citrix.com/products/xenserver/overview.html
Tam DK, Azimi R, Soares LB, Stumm M (2009) RapidMRC: approximating L2 miss rate curves on commodity systems for online optimizations. ACM SIGARCH Comput Architect News (1):121–132
Zhang X, Dwarkadas S, Shen K (2009)Towards practical page coloring based multicore cache management. In: Proceedings of the 4th ACM European Conference on Computer Systems (EuroSys). doi:10.1145/1519065.1519076
Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2013) Memguard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms. In: IEEE 19th real-time and embedded technology and applications symposium (RTAS), pp 55–64. doi:10.1109/RTAS.2013.6531079
Gundecha R (2008) Performance isolation in virtualized machines. Dissertation, Mumbai
Silva M, Ryu KD, Da Silva D (2012) VM performance isolation to support qos in cloud. In: 26th Parallel and distributed processing IEEE symposium workshops & Ph.D. forum, pp 1144–1151
Singh S, Chana I (2015) QRSF: QoS-aware resource scheduling framework in cloud computing. J Supercomput 71(1):241–292. doi:10.1007/s11227-014-1295-6
Novakovic D, Vasic N, Novakovic S, Kostic D, Bianchini R (2013) Deepdive: transparently identifying and managing performance interference in virtualized environments. In: USENIX ATC’13 Proceedings of the 2013 USENIX Conference on Annual Technical Conference, pp 219–230
Somani G, Khandelwal P, Phatnani K (2012) Vupic: virtual machine usage based placement in IaaS cloud. arXiv preprint arXiv:1212.0085
Lama P, Zhou X (2012) NINEPIN: non-invasive and energy efficient performance isolation in virtualized servers. In: 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp 1–12
Lama P, Guo Y, Zhou X (2013) Autonomic performance and power control for co-located web applications on virtualized servers. In: Quality of Service (IWQoS), 2013 IEEE/ACM 21st international symposium, pp 1–10. doi:10.1109/IWQoS.2013.6550266
Ismail BI, Jagadisan D, Khalid MF (2011) Determining overhead, variance and isolation metrics in virtualization for IaaS Cloud. In: Data driven e-Science, pp 315–330
Liu H, He B (2014) Reciprocal resource fairness: towards cooperative multiple-resource fair sharing in IaaS clouds. In: Proceedings of the IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp 970–981. doi:10.1109/SC.2014.84
Angel S, Ballani H, Karagiannis T, OShea G, Thereska E (2014) End-to-end performance isolation through virtual datacenters. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, pp 233–248
Shojafar M, Canali C, Lancellotti R, Abawajy J (2016) Adaptive computing-plus-communication optimization framework for multimedia processing in cloud systems. IEEE Trans Cloud Comput 99:11. doi:10.1109/TCC.2016.2617367
Thereska E, Ballani H, OShea G, Karagiannis T, Rowstron A, Talpey T, Black R, Zhu T, (2013) IOFlow: a software-defined storage architecture. In Proceedings of the ACM symposium on operating systems principles (SOSP). doi:10.1145/2517349.2522723
Jalili Marandi P, Gkantsidis C, Junqueira F, Narayanan D (2016) Filo: consolidated consensus as a cloud service. In: Proceeding USENIX ATC ’16 Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference, pp 237–249
Shue D, Freedman MJ, Shaikh A (2012) Performance isolation and fairness for multi-tenant cloud storage. OSDI 2012:349–362
Wu S, Tao S, Ling X, Fan H, Jin H, Ibrahim S (2015) IShare: balancing I/O performance isolation and disk I/O efficiency in virtualized environments. Practice and experience, concurrency and computation. doi:10.1002/cpe.3496
Wang X, Xie X, Jin H, Shi X, Cao W, Ke X (2013) A disk bandwidth allocation mechanism with priority. J Supercomput 66(2):686–699. doi:10.1007/s11227-012-0857-8
Shieh A, Kandula S, Greenberg A, Kim C (2010) Seawall: performance isolation for cloud datacenter networks. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing
Jeyakumar V, Alizadeh M, Mazieres D, Prabhakar B, Kim C, Greenberg A (2013) EyeQ: practical network performance isolation at the edge. In: Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation , pp 297–312
Guo J, Liu F, Lui J, Jin HJ (2016) Fair network bandwidth allocation in IaaS datacenters via a cooperative game approach. IEEE Trans Netw 24(2):873–886. doi:10.1109/TNET.2015.2389270
Lu C, Lu Y, Abdelzaher TF, Stankovic J, Son SH (2006) Feedback control architecture and design methodology for service delay guarantees in web servers. Parallel Distrib Syst IEEE Trans 17(9):1014–1027
Hellerstein JL, Morrison V, Eilebrecht E (2010) Applying control theory in the real world: experience with building a controller for the. net thread pool. ACM SIGMETRICS Perform Eval Rev 37(3):38–42. doi:10.1145/1710115.1710123
Yu J, Rao R (2012) A method for solving the performance isolation problem in PaaS based on forecast and dynamic programming. In: Computational and Information Sciences (ICCIS), Fourth International Conference, pp 947–950. doi:10.1109/ICCIS.2012.23
Dua R, Kakadia D (2014) Virtualization versus containerization to support PaaS. In: Cloud Engineering (IC2E), 2014 IEEE International Conference, pp 610–614. doi:10.1109/IC2E.2014.41
Calheiros RN, Vecchiola C, Karunamoorthy D, Buyya R (2012) The Aneka platform and QoS-driven resource provisioning for elastic applications on hybrid clouds. J Future Gener Comput Syst 28(6):861–870
Jennings R (2010) Cloud computing with the Windows Azure platform, 1st edn. Wiley, Hoboken
Mcgrath MP, Hicks M, West T, McPherson DC (2012) Mechanism for controlling capacity in a multi-tenant platform-as-a-service (Paas) environment in a cloud computing system. In: Google patents
Loesch M, Krebs R (2013) Conceptual approach for performance isolation in multi-tenant systems. CLOSER 2013:297–302
Narasayya VR, Das S, Syamala M, Chandramouli B, Chaudhuri S (2013) SQLVM: Performance isolation in multi-tenant relational database-as-a-service. In: 6th Biennial Conference on Innovative Data Systems Research (CIDR’13)
Das S, Narasayya VR, Li F, Syamala M (2013) CPU sharing techniques for performance isolation in multi-tenant relational database-as-a-service. Proc VLDB Endow 7(1):37–48. doi:10.14778/2732219.2732223
Kiefer T, Schn H, Habich D, Lehner W (2014) A query, a minute: evaluating performance isolation in cloud databases. In: Performance characterization and benchmarking. Traditional to big data, pp 173–187. doi:10.1007/978-3-319-15350-6_11
Zhang Y, Wang Z, Gao B, Guo C, Sun W, Li X (2010) An effective heuristic for on-line tenant placement problem in SaaS. In: Web Services (icws), 2010 IEEE International Conference, pp 425–432. doi:10.1109/ICWS.2010.65
Fehling C, Leymann F, Mietzner R (2010) A framework for optimized distribution of tenants in cloud applications. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference, pp 252–259
Guo CJ, Sun W, Huang Y, Wang ZH, Gao B (2007) A framework for native multi-tenancy application development and management. In: E-Commerce Technology and the 4th IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, pp 551–558
Liu XH, Li TC, Chen Y (2008) SPIN: service performance isolation infrastructure in multi-tenancy environment. In: Service-oriented computing ICSOC 2008, pp 649–663
Oral A, Tekinerdogan B (2015) Supporting performance isolation in software as a service systems with rich clients. In: IEEE International Congress on Big Data, pp 297–304. doi:10.1109/BigDataCongress.2015.49
Cheng X, Shi Y, Li Q (2009) A multi-tenant oriented performance monitoring, detecting and scheduling architecture based on SLA. In: Joint Conferences on Pervasive Computing (JCPC), pp 599–604. doi:10.1109/JCPC.2009.5420114
Huang J et al (2017) Flashblox: achieving both performance isolation and uniform lifetime for virtualized ssds. In: 15th USENIX Conference on File and Storage Technologies (FAST), USENIX
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fareghzadeh, N., Seyyedi, M.A. & Mohsenzadeh, M. Dynamic performance isolation management for cloud computing services. J Supercomput 74, 417–455 (2018). https://doi.org/10.1007/s11227-017-2135-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-017-2135-2