Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Trend analysis using agglomerative hierarchical clustering approach for time series big data

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Road traffic accidents are a ‘global tragedy’ that generates unpredictable chunks of data having heterogeneity. To avoid this heterogeneous tragedy, we need to fraternize and categorize the datasets. This can be done with the help of clustering and association rule mining techniques. As the trend of accidents is increasing throughout the year, agglomerative hierarchical clustering approach is proposed for time series big data for trend analysis. This clustering approach segments the time sequence data into different clusters after normalizing the discrete time sequence data. Agglomerative hierarchical clustering takes the objects with similar properties and groups them together to form the group of clusters. The paradigmatic time sequence (PTS) data for each cluster with the help of dynamic time warping are identified that calculate the closest time sequence. The PTS analyzes various zone details and forms a cluster to report the data. This approach is more useful and optimal than the traditional statistical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Abellan J, Lopez G, Ona J (2013) Analysis of traffic accident severity using decision rules via decision trees. Expert System Appl 40:6047–6054

    Article  Google Scholar 

  2. Kumar S, Toshniwal D (2015) Analyzing road accident data using association rule mining. In: International Conference on Computing, Communication and Security”, ICCCS-2015, vol. 20, pp. 30–40

  3. Kumar S, Toshniwal D (2016) A novel framework to analyze road accident time series data. J. Big Data 30:5004–5020

    Google Scholar 

  4. Wang L, Lu H-P, Zheng Y, Qian Z (2014) Safety analysis for expressway based on Bayesian network: a case study in China. IEEE Commun Mag

  5. de Ona J, Mujalli RO, Calvo FJ (2011) Analysis of traffic accident injury severity on Spanish rural highway using Bayesian networks. ScienceDirect Accid Anal Prevent 43:402–411

    Article  Google Scholar 

  6. Pakgohar A, Tabrizi RS, Khalili M, Esmaeili A (2011) The role of human factor in incidence and severity of road crashes based on the CART and LR regression: a data mining approach. Procedia Comput Sci 3:764–769. https://doi.org/10.1016/j.procs.2010.12.126

    Article  Google Scholar 

  7. Kumar S, Toshniwal D (2016) A data mining approach to characterize road accident locations. J Modern Transp 24(1):62–72

    Article  Google Scholar 

  8. Lv Y, Duan Y, Kang W, Li Z, Wang F-Y (2015) Fellow”, traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 16:2

    Article  Google Scholar 

  9. de Oña J, López G, Mujalli R, Calvo FJ (2013) Analysis of traffic accidents on rural highways using latent class clustering and Bayesian networks. ScienceDirect Accid Anal Prev 51:1–10

    Article  Google Scholar 

  10. Regine S, Simon C, Maurice A (2015) Processing traffic and road accident data in two case studied of road operation assessment. ScienceDirect 6:90–100

    Google Scholar 

  11. Kumar S, Toshniwal D (2015) A data mining framework to analyze road accident data. J Big Data 2:26

    Article  Google Scholar 

  12. Kee D, Jun GT, Waterson P, Haslam R (2016) A systemic analysis of South Korea Sewol ferry accident—striking a balance between learning and accountability. Appl Ergon 1:1–14

    Google Scholar 

  13. Ramos L, Silva L, Santos MY, Pires JM (2015) Detection of road accidents accumulation zones with a visual analytics approach. ScienceDirect 64:969–976

    Google Scholar 

  14. Xi J, Zhao Z, Li W, Wang Q (2016) A traffic accident causation analysis method based on AHP-Apriori. ScienceDirect Procedia Eng 137:680–687

    Article  Google Scholar 

  15. Fu T-C (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164181

    Article  Google Scholar 

  16. Shanmuganathan V, Yesudhas HR, Khan MS et al (2020) R-CNN and wavelet feature extraction for hand gesture recognition with EMG signals. Neural Comput Appl 32:16723–16736

    Article  Google Scholar 

  17. Ilango SS, Vimal S, Kaliappan M et al (2018) Optimization using artificial bee colony based clustering approach for big data. Cluster Comput. https://doi.org/10.1007/s10586-017-1571-3

    Article  Google Scholar 

  18. Vo V, Luo J, Vo B (2016) Time series trend analysis based on k-means and support vector machine. Comput Inform 35(1):111127

    MathSciNet  MATH  Google Scholar 

  19. Heaton J (2018) Ian Goodfellow, Yoshua Bengio, and Aaron Courville: deep learning. Genet Program Evolvable Mach 19:305–307 (2018). https://doi.org/10.1007/s10710-017-9314-z

    Article  Google Scholar 

  20. Fujiwara T, Li JK, Mubarak M, Ross C, Carothers CD, Ross RB, Ma K-L (2018) A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems. Vis Inform 2(1):98–110. https://doi.org/10.1016/j.visinf.2018.04.010

    Article  Google Scholar 

  21. Ramamurthy M, Robinson YH, Vimal S, Suresh A (2020) Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images. Microprocess Microsyst 79

  22. Keim DA, Munzner T, Rossi F, Verleysen M (2015) Bridging information visualization with machine learning (Dagstuhl seminar 15101). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, Germany, Dagstuhl Rep 3 5(3)

  23. Keim DA, Rossi F, Seidl T, Verleysen M, Wrobel S (2012) Information visualization, visual data mining and machine learning (Dagstuhl seminar 12081). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, Germany, Dagstuhl Rep 2 2(2)

  24. Hadlak S, Schumann H, Cap CH, Wollenberg T (2013) Supporting the visual analysis of dynamic networks by clustering associated temporal attributes. IEEE Trans Vis Comput Graphics 19(12):2267–2276. https://doi.org/10.1109/TVCG.2013.198

    Article  Google Scholar 

  25. Xing Z, Pei J, Keogh E (2010) Abrief survey on sequence classication. ACM SIGKDD Explor Newslett 12(1):4048

    Article  Google Scholar 

  26. Kalamaras I et al (2018) An interactive visual analytics platform for smart intelligent transportation systems management. IEEE Trans Intell Transp Syst 19(2):487–496. https://doi.org/10.1109/TITS.2017.2727143

    Article  Google Scholar 

  27. Steiger M, Bernard J, Mittelstädt S, Lücke-Tieke H, Keim D, May T, Kohlhammer J (2014) Visual analysis of time-series similarities for anomaly detection in sensor networks. Comput Graph Forum 33(3):401410

    Article  Google Scholar 

  28. Gopikumar S, Raja S, Robinson YH, Shanmuganathan V, Chang H, Rho S (2020) A method of landfill leachate management using internet of things for sustainable smart city development. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2020.102521

    Article  Google Scholar 

  29. Ramamurthy M, Krishnamurthi I, Vimal S, Robinson YH (2020) Deep learning based genome analysis and NGS-RNA LL identification with a novel hybrid model. Biosystems 197

  30. Stopar L, Skraba P, Grobelnik M, Mladenic D (2018) Streamstory: exploring multivariate time series on multiple scales. IEEE Trans Vis Comput Graphics 25(4):17881802

    Google Scholar 

  31. Sacha D, Kraus M, Bernard J, Behrisch M, Schreck T, Asano Y, Keim DA (2018) SOMFlow: guided exploratory cluster analysis with selforganizing maps and analytic provenance. IEEE Trans Vis Comput Graphics 24(1):120130

    Article  Google Scholar 

  32. Xie X, Cai X, Zhou J, Cao N, Wu Y (2019) Asemantic-based method for visualizing large image collections. IEEE Trans Vis Comput Graphics 25(7):23622377

    Article  Google Scholar 

  33. Silva PB, Andrade M, Ferreira S (2020) Machine learning applied to road safety modeling: a systematic literature review. J Traffic Transp Eng (Engl Ed) 7(6):2095–7564. https://doi.org/10.1016/j.jtte.2020.07.004

    Article  Google Scholar 

  34. Ali M, Jones MW, Xie X, Williams M (2019) TimeCluster: dimension reduction applied to temporal data for visual analytics. Vis Comput 35(6):10131026

    Google Scholar 

  35. Liu M, Shi J, Cao K, Zhu J, Liu S (2018) Analyzing the training processes of deep generative models. IEEE Trans Vis Comput Graphics 24(1):7787

    Google Scholar 

  36. Senaratne H, Mueller M, Behrisch M, Lalanne F, Bustos-Jiménez J, Schneidewind J, Keim D, Schreck T (2018) Urban mobility analysis with mobile network data: a visual analytics approach. IEEE Trans Intell Transp Syst 19(5):15371546

    Article  Google Scholar 

  37. Chen Y, Xu P, Ren L (2018) Sequence synopsis: optimize visual summary of temporal event data. IEEE Trans Vis Comput Graphics 24(1):4555

    Article  Google Scholar 

  38. Annamalai S, Udendhran R, Vimal S (2019) An intelligent grid network based on cloud computing infrastructures. Novel Pract Trends Grid Cloud Comput. https://doi.org/10.4018/978-1-5225-9023-1.ch005

    Article  Google Scholar 

  39. Annamalai S, Udendhran R, Vimal S (2019) Cloud-based predictive maintenance and machine monitoring for intelligent manufacturing for automobile industry. Novel Pract Trends Grid Cloud Comput. https://doi.org/10.4018/978-1-5225-9023-1.ch006

    Article  Google Scholar 

  40. Kumar S, Toshniwal D (2016) Analysis of hourly road accident countsusing hierarchical clustering and Cophenetic correlation coefficient (CPCC). J Big Data 3(13):20–56

    Google Scholar 

  41. Vimal S, Suresh A, Subbulakshmi P, Pradeepa S, Kaliappan M (2020) Edge computing-based intrusion detection system for smart cities development using IoT in urban areas. In: Kanagachidambaresan G, Maheswar R, Manikandan V, Ramakrishnan K (eds) Internet of things in smart technologies for sustainable urban development. EAI/Springer innovations in communication and computing. Springer, Cham

    Google Scholar 

  42. Vimal S et al (2020) Deep learning-based decision-making with WoT for smart city development. Smart innovation of web of things. CRC Press, Boca Raton, pp 51–62

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1076976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mucheol Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasupathi, S., Shanmuganathan, V., Madasamy, K. et al. Trend analysis using agglomerative hierarchical clustering approach for time series big data. J Supercomput 77, 6505–6524 (2021). https://doi.org/10.1007/s11227-020-03580-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03580-9

Keywords