Abstract
This paper proposes a novel metaheuristic optimizer, named Colony Search Optimization Algorithm (CSOA). The algorithm mimics the social behavior of early humans. Early humans expanded their settlements in search of more livable places to live. In CSOA, the worst solution is used to escape from local optima. And the number of these redundant solutions’ updates is reduced to improve the performance of the algorithm. CSOA is tested with 26 mathematical optimization problems and 4 classical engineering optimization problems. The optimization results are compared with those of various optimization algorithms. The experimental results show that the CSOA is able to provide very competitive results on most of the tested problems. Then, a new effective method is provided for solving optimization problems.
Similar content being viewed by others
References
Talbi EG (2009) Metaheuristics: from design to implementation. Wiley
Zhang D, Cai S, Ye F et al (2017) A hybrid algorithm for a vehicle routing problem with realistic constraints. Inf Sci 394:167–182
Alazzam H, Alhenawi E, Al-Sayyed R (2019) A hybrid job scheduling algorithm based on Tabu and Harmony search algorithms. J Supercomput 75(12):7994–8011
Bahadure NB, Ray AK, Thethi HP (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. J Digit Imaging 31(4):477–489
Suresh A, Kumar R, Varatharajan R (2020) Health care data analysis using evolutionary algorithm. J Supercomput 76(6):4262–4271
Simşir Ş, Taşpinar N (2018) Advanced pilot design procedure based on HS algorithm for OFDM-IDMA system. IET Commun 12(10):1155–1162
Gupta D, Sundaram S, Khanna A et al (2018) Improved diagnosis of Parkinson’s disease using optimized crow search algorithm. Comput Electr Eng 68:412–424
Fallah N, Vaez SRH, Mohammadzadeh A (2018) Multi-damage identification of large-scale truss structures using a two-step approach. J Build Eng 19:494–505
Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press
Kashan AH (2009) League championship algorithm: a new algorithm for numerical function optimization. 2009 International Conference of Soft Computing and Pattern Recognition. IEEE, 2009:43–48
Moosavian N, Roodsari BK (2014) Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol Comput 17:14–24
Bouchekara H (2020) Most valuable player algorithm: a novel optimization algorithm inspired from sport. Oper Res Int J 20(1):139–195
Kaveh A, Eslamlou AD (2020) Water strider algorithm: a new metaheuristic and applications. Structures. Elsevier, 25:520–541
Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam R (2020) Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput 24(19):14637–14665
AL-Kubaisy WJ, Yousif M, Al-Khateeb B et al (2021) The Red colobuses monkey: a new nature-inspired metaheuristic optimization algorithm. Int J Comput Intell Syst 14(1):1108–1118
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks. IEEE, 4:1942–1948
Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67
Li X (2002) An optimizing method based on autonomous animats: fish-swarm algorithm. Syst Eng-Theory Pract 22(11):32–38
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department
Socha K, Dorigo M (2008) Ant colony optimization for continuous domains[J]. Eur J Oper Res 185(3):1155–1173
Yang X S, Deb S. Cuckoo search via Lévy flights[C]//2009 World congress on nature & biologically inspired computing (NaBIC). Ieee, 2009: 210–214.
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: Squirrel search algorithm[J]. Swarm Evol Comput 44:148–175
Tzanetos A, Dounias G (2020) Sonar inspired optimization (SIO) in engineering applications. Evol Syst 11(3):531–539
Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34
Kaur S, Awasthi LK, Sangal AL et al (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541
Kivi ME, Majidnezhad V (2021) A novel swarm intelligence algorithm inspired by the grazing of sheep. J Ambient Intell Humaniz Comput 2021:1–13
Dhiman G, Garg M, Nagar A et al (2021) A novel algorithm for global optimization: rat swarm optimizer. J Ambient Intell Humaniz Comput 12(8):8457–8482
Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680
Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248
Yang XS (2012) Flower pollination algorithm for global optimization. International Conference on Unconventional Computing and Natural computation. Springer, Berlin, Heidelberg, pp 240–249
Yang XS (2010) A new metaheuristic bat-inspired algorithm[M]//Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 65–74
Eskandar H, Sadollah A, Bahreininejad A et al (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems[J]. Comput Struct 110:151–166
Luo K (2021) Water flow optimizer: a nature-inspired evolutionary algorithm for global optimization. IEEE Trans Cybern
Bodner B (2019) Benchmarking the ATM algorithm on the BBOB 2009 noiseless function testbed. Proc Genet Evol Comput Conf Companion 2019:1897–1904
Brockhoff D, Hansen N (2019) The impact of sample volume in random search on the bbob test suite. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp 1912–1919
Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. IEEE, pp 68–75
Suganthan PN, Hansen N, Liang JJ et al (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Rep 2005(2005005):2005
Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203
Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315
Li MD, Zhao H, Weng XW et al (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88
dos Santos CL (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37(2):1676–1683
Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014
Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127
Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence, pp 652–662. Springer, Berlin, Heidelberg
Sadollah A, Bahreininejad A, Eskandar H et al (2013) Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat, pp 65–70
García S, Fernández A, Luengo J et al (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13(10):959
Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18
Neri F, Mininno E, Iacca G (2013) Compact particle swarm optimization. Inf Sci 239:96–121
Acknowledgements
The author would like to thank anonymous reviewers for their constructive comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wen, H., Wang, S.X., Lu, F.Q. et al. Colony search optimization algorithm using global optimization. J Supercomput 78, 6567–6611 (2022). https://doi.org/10.1007/s11227-021-04127-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-021-04127-2