Abstract
Sortal predicates have been associated with a counting process, which acts as a criterion of identity for the individuals they correctly apply to. We discuss in what sense certain types of predicates suggested by quantum physics deserve the title of ‘sortal’ as well, although they do not characterize either a process of counting or a criterion of identity for the entities that fall under them. We call such predicates ‘quantum-sortal predicates’ and, instead of a process of counting, to them is associated a ‘criterion of cardinality’. After their general characterization, it is discussed how these predicates can be formally described.
Similar content being viewed by others
References
Auyang S.Y. (1995). How is quantum field theory possible?. Oxford University Press, Oxford
da Costa N.C.A., Krause D. (1997). An intensional Schrödinger logic. Notre Dame Journal of Formal Logic 38(2):179–194
Dalla Chiara, M. L., & Toraldo di Francia, G. (1993). Individuals, kinds and names in physics. In G. Corsi et al. (Eds.), Bridging the gap: Philosophy, mathematics, physics (pp. 261–283). Kluwer Academic Publisher, Dordrecht.
Dalla Chiara, M. L., Giuntini, R., and Krause, D. (1998). Quasiset theories for microobjects: A comparision. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics (pp. 142–152). Princeton: Princeton University Press.
French, S. (1998). On the withering away of physical objects. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics (pp. 93–113). Princeton: Princeton University Press.
French, S. (2000). Identity and individuality in quantum theory. The Stanford Encyclopedia of Philosophy (Spring 2000 Edition), Edward N. Zalta (Ed.), http://plato.stanford. edu/archives/spr2000/entries/qt-idind
French S., Redhead M. (1988). Quantum physics and the identity of indiscernibles. British Journal of the Philosophy of Science 39:233–246
French S., Krause D. (2003). Quantum vagueness. Erkenntnis 59(1):97–124
Gallin D. (1975). Intensional and higher order modal logic. North-Holland, Amsterdam
Geach P.T. (1962). Reference and generality. Cornell University Press, Ithaca
Geach P.T. (1967). Identity. The Review of Methaphysics XXI(1):3–12
Krause D. (1992). On a quasi-set theory. Notre Dame Journal of Formal Logic 33:402–411
Krause, D. (2002a). Lógica sortal e física quântica. In A. O. Cupani, & C. A. e Mortari (orgs.), Linguagem e Filosofia, (Anais do Segundo Simpósio Internacional Principia, Florianópolis, SC Brasil, 6–10 Agosto 2001), Florianópolis, Nel-Nú de Epistemologia e Lógica, pp. 23–42.
Krause, D. (2002b). Sortal predication and quantum physics. CLE e-prints, Vol. 2, n. 4, (Section Logic), www.cle.unicamp.br/e-prints
Krause, D., & French, S. (1999). Opaque predicates and their logic. In W. Carnielli, & I. M. L. D Ottaviano (Eds.), Advances in contemporary logic and computer science (pp. 263–274). American Mathematical Society (Contemporary Mathematics 235).
Lowe J.E. (1995). Locke on human understanding. Routledge, London
Lowe, J. E. (1994). Vague identity and quantum indeterminacy. Analysis, 54.2, April, 110–114
Magee B. (1973). The nature of things. Routledge & Kegan Paul, London
Lévy-Leblond, J.-M., & Balibar, F. (1990). Quantics: Rudiments of quantum physics. Amsterdam: Elsevier.
Pelletier F.J. (1992). Review of E. J. Lowe’s Kinds of being: A study of individuation, identity and the logic of sortal terms. History Philosophy of Logic 13(1):125–128
Redhead M., Teller P. (1991). Particles, particle labels, and quanta: The toll of unacknowledged metaphysics. Foundations of Physics 21:43–62
Schrödinger E. (1952). Science and humanism. Cambridge University Press, Cambridge
Schrödinger, E. (1998). What is an elementary particle?, reprinted. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics (pp. 197–210). Princeton: Princeton University Press.
Strawson P.F. (1959). Individuals. Methuen, London
Stevenson L. (1975). A formal theory of sortal quantification. Notre Dame Journal of Formal Logic 16:185–207
Teller P. (1995). An interpretative introduction to quantum field theory. Princeton University Press, Princeton
Terricabras J.-M., Trillas E. (1989). Some remarks on vague predicates. Theoria—Segunda época 10:1–12
Toraldo di Francia G. (1978). What is a physical object?. Scientia 113:57–65
Toraldo di Francia G. (1981). The investigation of the physical world. Cambridge University Press, Cambridge
Wallace J.R. (1965). Sortal predicates and quantification. Journal of Philosophy 62:8–13
Author information
Authors and Affiliations
Corresponding author
Additional information
To Patrick Suppes on his 80th birthday.
Rights and permissions
About this article
Cite this article
Krause, D., French, S. Quantum sortal predicates. Synthese 154, 417–430 (2007). https://doi.org/10.1007/s11229-006-9127-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11229-006-9127-8