Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monocular camera-based face liveness detection by combining eyeblink and scene context

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents a face liveness detection system against spoofing with photographs, videos, and 3D models of a valid user in a face recognition system. Anti-spoofing clues inside and outside a face are both exploited in our system. The inside-face clues of spontaneous eyeblinks are employed for anti-spoofing of photographs and 3D models. The outside-face clues of scene context are used for anti-spoofing of video replays. The system does not need user collaborations, i.e. it runs in a non-intrusive manner. In our system, the eyeblink detection is formulated as an inference problem of an undirected conditional graphical framework which models contextual dependencies in blink image sequences. The scene context clue is found by comparing the difference of regions of interest between the reference scene image and the input one, which is based on the similarity computed by local binary pattern descriptors on a series of fiducial points extracted in scale space. Extensive experiments are carried out to show the effectiveness of our system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jain, A., Bolle, R., & Pankanti, S. (1999). Biometrics: personal identification in networked society. Berlin: Springer.

    Google Scholar 

  2. Schuckers, S. (2002). Spoofing and anti-spoofing measures, information security technical report (Vol. 7, pp. 56–62). Amsterdam: Elsevier.

    Google Scholar 

  3. Bigun, J., Fronthaler, H., & Kollreider, K. (2004). Assuring liveness in biometric identity authentication by real-time face tracking. In: IEEE international conference on computational intelligence for homeland security and personal safety (CIHSPS’04) (pp. 104–111), 21–22 July 2004.

  4. Parthasaradhi, S., Derakhshani, R., Hornak, L., & Schuckers, S. (2005). Time-series detection of perspiration as a liveness test in fingerprint devices. IEEE Trans. Syst. Man Cybern., 35(3), 335–343.

    Article  Google Scholar 

  5. Antonelli, A., Cappelli, R., Maio, D., & Maltoni, D. (2006). Fake finger detection by skin distortion analysis. IEEE Trans. Inf. Forensics Secur., 1(3), 360–373.

    Article  Google Scholar 

  6. Zhao, W., Chellappa, R., Phillips, J., & Rosenfeld, A. (2003). Face recognition: a literature survey. ACM Comput. Surv., 35, 399–458.

    Article  Google Scholar 

  7. Frischholz, R. W., & Dieckmann, U. (2000). BioID: a multimodal biometric identification system. IEEE Comput., 33(2), 64–68.

    Google Scholar 

  8. Kollreider, K., Fronthaler, H., Faraj, M. I., & Bigun, J. (2007). Real-time face detection and motion analysis with application in liveness assessment. IEEE Trans. Inf. Forensics Secur., 2(3), 548–558.

    Article  Google Scholar 

  9. Frischholz, R. W., & Werner, A. (2003). Avoiding replay-attacks in a face recognition system using head-pose estimation. In IEEE international workshop on analysis and modeling of faces and gestures (AMFG’03) (pp. 234–235).

  10. Choudhury, T., Clarkson, B., Jebara, T., & Pentland, A. (1999). Multimodal person recognition using unconstrained audio and video. In Proc. 2nd int. conf. audio-video based person authentication (AVBPA’99) (pp. 176–181), Washington, DC, 1999.

  11. Kollreider, K., Fronthaler, H., & Bigun, J. (2009). Non-intrusive liveness detection by face images. Image Vis. Comput., 27(3), 233–244.

    Article  Google Scholar 

  12. Pan, G., Sun, L., Wu, Z. H., & Lao, S. H. (2007). Eyeblink-based Anti-Spoofing in Face Recognition from a Generic Webcamera. In The 11th IEEE international conference on computer vision (ICCV’07), Rio de Janeiro, Brazil, 14–20 October 2007.

  13. Li, J. W., Wang, Y. H., Tan, T. N., & Jain, A. K. (2004). Live face detection based on the analysis of Fourier spectra, biometric technology for human identification. SPIE, 5404, 296–303.

    Article  Google Scholar 

  14. Socolinsky, D. A., Selinger, A., & Neuheisel, J. D. (2003). Face recognition with visible and thermal infrared imagery. Comput. Vis. Image Underst., 91(1–2), 72–114.

    Article  Google Scholar 

  15. Chetty, G., & Wagner, M. (2006). Multi-level liveness verification for face-voice biometric authentication. In Biometrics symposium 2006, Baltimore, Maryland, 19–21 Sep. 2006.

  16. Kollreider, K., Fronthaler, H., & Bigun, J. (2008). Verifying liveness by multiple experts in face biometrics, In IEEE computer society conference on computer vision and pattern recognition workshop on biometrics (pp. 1–6).

  17. Karson, C. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain, 106, 643–653.

    Article  Google Scholar 

  18. Tsubota, K. (1998). Tear dynamics and dry eye. Prog. Retin. Eye Res., 17(4), 565–596.

    Article  Google Scholar 

  19. Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proc. 18th int. conf. machine learning (pp. 282–289).

  20. Li, S. Z. (2001). Markov random field modeling in image analysis. Berlin: Springer.

    Google Scholar 

  21. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77(2), 257–286.

    Article  Google Scholar 

  22. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55(1), 119–139.

    Article  Google Scholar 

  23. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput. Vis., 57(2), 137–154.

    Article  Google Scholar 

  24. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2), 91–110.

    Article  Google Scholar 

  25. Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24(7), 971–987.

    Article  Google Scholar 

  26. Heikkilä, M., & Pietikäinen, M. (2006). A texture-based method for modeling the background and detecting moving object. IEEE Trans. Pattern Anal. Mach. Intell., 28(4), 657–662.

    Article  Google Scholar 

  27. Ahonen, T., Hadid, A., & Pietikäinen, M. (2006). Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 28(12), 2037–2041.

    Article  Google Scholar 

  28. Jones, J., & Palmer, L. (2006). An evaluation of the two dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophys., 58(6), 1233–1258.

    Google Scholar 

  29. Wiskott, L., Fellous, J. M., Kruger, N., & Malsburg, C. (1997). Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 19(7), 775–779.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, G., Sun, L., Wu, Z. et al. Monocular camera-based face liveness detection by combining eyeblink and scene context. Telecommun Syst 47, 215–225 (2011). https://doi.org/10.1007/s11235-010-9313-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-010-9313-3

Keywords