Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Energy-aware two-way relaying networks under imperfect hardware: optimal throughput design and analysis

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a new formula for achieving optimal throughput in energy-aware cooperative networks with generic time and power energy harvesting protocol, namely time power switching based relaying (TPSR). Especially, this investigation analyzes the impact of imperfect hardware at the relay node and the destination node in the two-way relaying networks (TWRN). This analysis enables us to derive the closed-form expressions of outage probabilities of signal-to-noise and distortion ratio (SNDR) at the destination nodes under the effect of hardware impairments. Interestingly, the optimal policy of joint wireless information and energy transfer is designed to maximize the system throughput by finding the optimal time switching and power splitting fractions in the proposed TPSR protocol. An important achievement is that the proposed optimal design offers the maximum throughput of system when we consider the trade-off between throughput and time-power factors in energy harvesting protocol by both numerical method and simulation. Numerical results provide practical insights into the performance of energy-aware TWRN under hardware impairments. Monte-Carlo method is also deployed to corroborate the accuracy of analytical derived expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Park, J., & Clerckx, B. (2013). Joint wireless information and energy transfer in a two-user MIMO interference channel. IEEE Transactions on Communications, 12(8), 4210–4221.

    Google Scholar 

  2. Bai, Q., Amjad, A., & Nossek, A. (2013). Average throughput maximization for energy harvesting transmitters with causal energy arrival information. In Proceedings of IEEE international conference on wireless communications ans networking (WCNC) (pp. 4232–4237), Shanghai, China, Apr. 2013.

  3. Lakshminarayana, S., & Quek, T. Q. S. (2014). Throughput maximization with channel aquisition in energy harvesting systems. In Proceedings of the IEEE international conference on communications (ICC) (pp. 2430–2435), Sydney, Australia, June 2014.

  4. Minasian, A., ShahbazPanahi, S., & Adve, R. S. (2014). Energy harvesting cooperative communication systems. IEEE Transactions on Wireless Communications, 13(11), 6118–6131.

    Article  Google Scholar 

  5. Lang, H. D., Ludwig, A., & Sarris, C. (2014). Convex optimization of wireless power transfer systems with multiple transmitters. IEEE Transactions on Antennas and Propagation, 62(9), 4623–4636.

    Article  Google Scholar 

  6. Krikidis, I., Charalambous, T., & Thompson, J. (2012). Stability analysis and power optimization for energy harvesting cooperative networks. IEEE Signal Processing Letters, 19(1), 20–23.

    Article  Google Scholar 

  7. Dohler, M., & Li, Y. (2010). Cooperative communications: hardware, channel and PHY. New York: Wiley.

    Book  Google Scholar 

  8. Zhang, R., Liang, Y.-C., Chai, C., & Cui, S. (2009). Optimal beamforming for two-way multi-antenna relay channel with analogue network coding. IEEE Journal on Selected Areas in Communications, 27(5), 699–722.

    Article  Google Scholar 

  9. Louie, R. H. Y., Yonghui, L., & Vucetic, B. (2010). Practical physical layer network coding for two-way relay channels: performance analysis and comparison. IEEE Transactions on Wireless Communications, 9(2), 764–777.

    Article  Google Scholar 

  10. Oechtering, T. J., & Boche, H. (2008). Optimal time-division for bi-directional relaying using superposition encoding. IEEE Communications Letters, 12(4), 265–267.

    Article  Google Scholar 

  11. Ahmed, I., Ikhlef, A., Schober, R., & Mallik, R. K. (2013). Joint power allocation and relay selection in energy harvesting AF relay systems. IEEE Wireless Communications Letters, 2(2), 239–242.

    Article  Google Scholar 

  12. Yin, S., Zhang, E., Qu, Z., Yin, L., & Li, S. (2014). Optimal cooperation strategy in cognitive radio systems with energy harvesting. IEEE Transactions on Communications, 13(9), 4693–4707.

    Google Scholar 

  13. Tutuncuoglu, K., Varan, B., & Yener, A. (2013). Optimum transmission policies for energy harvesting two-way relay. In Proceedings of IEEE international conference on communications (ICC) (pp. 586–590), Budapest, Hungary, June 2013.

  14. Gu, Y., & Aïssa, S. (2014). Interference aided energy harvesting in decode-and-forward relaying systems. In Proceedings of the IEEE international conference on communications (ICC) (pp. 5378–5382), Sydney, Australia, June 2014.

  15. Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.

    Article  Google Scholar 

  16. Zhong, C., Suraweera, H. A., Zheng, G., Krikidis, I., & Zhang, Z. (2014). Wireless information and power transfer with full duplex relaying. Online: arXiv:1409.3904.

  17. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  18. Li, J., Matthaiou, M., & Svensson, T. (2014). I/Q imbalance in two-way AF relaying. IEEE Transactions on Communications, 62(7), 2271–2285.

    Article  Google Scholar 

  19. Schenk, T. (2008). RF imperfections in high-rate wireless systems. Berlin: Springer.

    Book  Google Scholar 

  20. Studer, C., Wenk, M., & Burg, A. (2010). MIMO transmission with residual transmit-RF impairments. In Proceedings of international ITG workshop on smart antennas (WSA 2010) (pp. 189–196), Bremen, Germany, Feb. 2010.

  21. Liu, Y., Wang, L., Elkashlan, M., Duong, T. Q., & Nallanathan, A. (2014). Two-way relaying networks with wireless power transfer: Policies design and throughput analysis. In Proceedings of IEEE global communications conference (GLOBECOM’14), Austin, TX.

  22. Ikki, S. S., & Aïssa, S. (2012). Performance analysis of two-way amplify-and-forward relaying in the presence of co-channel interferences. IEEE Transactions on Communications, 60(4), 933–939.

    Article  Google Scholar 

  23. Gao, F., Zhang, R., & Liang, Y.-C. (2009). Optimal channel estima-tion and training design for two-way relay networks. IEEE Transactions on Communications, 57(10), 3024–3033.

    Article  Google Scholar 

  24. Gao, F., Cui, T., & Nallanathan, A. (2008). On channel estimation and optimal training design for amplify and forward relay networks. IEEE Transactions on Wireless Communications, 7(5), 1907–1916.

    Article  Google Scholar 

  25. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  26. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products. New York, NY: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Appendices

Appendix A: Proof of Lemma 1

Proof

It should be noted that \(\rho _1\) and \(\rho _2\) are two independent random variables. By using the law of total probability to condition on \(\rho _1\) or \(\rho _2\) thanks to their equivalent roles, hereafter we thus compute the probability to condition on \({\rho _1}\) as follows

$$\begin{aligned}&I \mathop {=}\limits ^{\Delta } \Pr \left( \frac{\rho _1\rho _2}{m\rho _1^2 + m\rho _1\rho _2 + n\rho _1 + k} \le \lambda \right) \nonumber \\&\quad = 1 - \int \limits _0^\infty \Pr \left( \frac{\rho _1\rho _2}{m\rho _1^2 + m\rho _1\rho _2 + n\rho _1 + k} > \lambda \left| \rho _1 \right. \right) f_{\rho _1}(x)dx\nonumber \\ \end{aligned}$$
(40)

In (43), the first integral part can be further expressed by

$$\begin{aligned}&\Pr \left( \frac{\rho _1\rho _2}{m\rho _1^2 + m\rho _1\rho _2 + n\rho _1 + k} > \lambda \left| \rho _1 \right. \right) \nonumber \\&\quad = \left\{ {\begin{array}{ll} {1 - F_{\rho _2}\left( \frac{\lambda \left( m\rho _1^2 + n\rho _1 + k \right) }{\rho _1\left( 1 - \lambda m \right) } \right) ,}&{}{}\\ {0,}&{}{} \end{array}\begin{array}{ll} {if\;\lambda < \frac{1}{m}}\\ {if\;\lambda \ge \frac{1}{m}} \end{array}} \right. \end{aligned}$$
(41)

Applying (2), (3), and (41)–(43), we have a new formula for case of \( \lambda \le 1/m \)

$$\begin{aligned} I= & {} 1 - \int \limits _0^\infty {{e^{ - \frac{1}{{{\varOmega _2}}}\frac{{\lambda \left( {m{x^2} + nx + k} \right) }}{{x\left( {1 - \lambda m} \right) }}}}} \frac{1}{{{\varOmega _1}}}{e^{ - \frac{x}{{{\varOmega _1}}}}}dx\nonumber \\= & {} 1 - \frac{1}{{{\varOmega _1}}}{e^{ - \frac{{n\lambda }}{{{\varOmega _2}\left( {1 - \lambda m} \right) }}}}\int \limits _0^\infty {{e^{ - \left( {\frac{{\lambda m}}{{{\varOmega _2}\left( {1 - \lambda m} \right) }} + \frac{1}{{{\varOmega _1}}}} \right) x - \frac{{\lambda k}}{{{\varOmega _2}\left( {1 - \lambda m} \right) }}\frac{1}{x}}}} dx\nonumber \\ \end{aligned}$$
(42)

Finally, to obtain (23), we use (3.324.1) given in [26].

Appendix B: Proof of Lemma 2

Proof

Invoking the outage probability expression given below

$$\begin{aligned}&I \mathop {=}\limits ^{\Delta } \Pr \left( \frac{\rho _1\rho _2}{m\rho _1^2 + m\rho _1\rho _2 } \le \lambda \right) \nonumber \\&\quad = 1 - \int \limits _0^\infty \Pr \left( \frac{\rho _1\rho _2}{m\rho _1^2 + m\rho _1\rho _2 } > \lambda \left| \rho _1 \right. \right) f_{\rho _1}(x)dx \end{aligned}$$
(43)

We first calculate the conditional probability as

$$\begin{aligned}&\Pr \left( \frac{\rho _1\rho _2}{m\rho _1^2 + m\rho _1\rho _2 } > \lambda \left| \rho _1 \right. \right) \nonumber \\&\quad = \left\{ {\begin{array}{ll} {1 - F_{\rho _2}\left( \frac{\lambda m\rho _1}{1 - \lambda m } \right) ,}&{}{}\\ {0,}&{}{} \end{array}\begin{array}{ll} {if\;\lambda < \frac{1}{m}}\\ {if\;\lambda \ge \frac{1}{m}} \end{array}} \right. \end{aligned}$$
(44)

Similarly, the outage probability in case of \(\lambda < 1/m\) can be expressed as

$$\begin{aligned} I = 1 - \int \limits _0^\infty {{e^{ - \frac{1}{{{\varOmega _2}}}\frac{{\lambda mx}}{{1 - \lambda m}}}}} \frac{1}{{{\varOmega _1}}}{e^{ - \frac{x}{{{\varOmega _1}}}}}dx \end{aligned}$$
(45)

To this end, the desired result can be obtained after some simple algebraic manipulations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, DT. Energy-aware two-way relaying networks under imperfect hardware: optimal throughput design and analysis. Telecommun Syst 62, 449–459 (2016). https://doi.org/10.1007/s11235-015-0085-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0085-7

Keywords