Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Energy harvesting assisted cognitive radio: random location-based transceivers scheme and performance analysis

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

We consider spectrum-sharing scenario where coexist two communication networks including primary network and secondary network using the same spectrum. While the primary network includes directional multi-transceivers, the secondary network consists of relaying-based transceiver forwarding signals by energy harvesting assisted relay node. In cognitive radio, signals transmitted from secondary network are sufficiently small so that all of primary network receivers have signal to noise ratio (SNR) greater than a given threshold. In contrast, the transmitted signals from primary network cause increasing noise which is difficult to demodulate at secondary network nodes and hence it leads to the peak power constraint. In this paper, we focus on the influence of random location of transceivers at primary network using decode-and-forward protocol. Specifically, we derive closed-form outage probability expression of the secondary network under random location of transceivers and peak power constraint of primary network. This investigation shows the relationship between the fraction of energy harvesting time \(\alpha \) of time switching-based relaying protocol on outage probability of secondary network and throughput. In addition, we analyse the influence of the number of primary network transceivers as well as primary network’s SNR threshold on secondary network. Furthermore, the trade-off between increasing energy harvesting and rate was investigated under the effect of energy conversion efficiency. The accuracy of the expressions is validated via Monte-Carlo simulations. Numerical results highlight the trade-offs associated with the various energy harvesting time allocations as a function of outage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Do, D.-T. (2015). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems (Springer), 62(2), 449–459.

    Article  Google Scholar 

  2. Yin, S., Qu, Z., & Li, S. (2015). Achievable throughput optimization in energy harvesting cognitive radio systems. IEEE Journal on Selected Areas in Communications, 33(3), 407–422.

    Article  Google Scholar 

  3. Gu, Y., & Aissa, S. (2014). Interference aided energy harvesting in decode-and-forward relaying systems. In Proc. of IEEE international conference on communications (ICC), Sydney, Australia, June 2014, pp. 5378–5382.

  4. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  5. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2014). Throughput and ergodic capacity of wireless harvesting based DF relaying network. In Proc. of IEEE ICC, Sydney, Australia, June 2014, pp. 4066–4071.

  6. Do, D.-T. (2016). Optimal throughput under time power switching based relaying protocol in energy harvesting cooperative network. Wireless Personal Communications (Springer), 87(2), 551–564.

    Article  Google Scholar 

  7. Wang, Z., Chen, Z., Yao, Y., Xia, B., & Liu, H. (2014). Wireless energy harvesting and information transfer in cognitive two-way networks. In Proc. of IEEE GLOBECOM, Austin, Texas, US, Dec. 2014, pp. 3465–3470.

  8. Liu, Y., Wang, L., Elkashlan, M., Duong, Trung Q., & Nallanathan, A. (2014). Relaying networks with wireless power transfer policies design and throughput analysis. In Proc. of IEEE GLOBECOM, Austin, Texas, US, Dec. 2014, pp. 4030–4035.

  9. Liu, Y., Ali Mousavifar, S., Deng, Y., Leung, Cyril, & Eskashlan, M. (2015). Wireless energy harvesting in a cognitive relay networks’. IEEE Transactions on Wireless Communications, 15(4), 2498–2508.

    Article  Google Scholar 

  10. Yang, Z., Ding, Z., Fan, P., & Karagiannidis, G. K. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.

    Article  Google Scholar 

  11. Liu, L., Zang, R., & Chua, K. C. (2013). Wireless information and power transfer: A dynamic power splitting approach. IEEE Transactions on Communications, 61(9), 3990–4001.

    Article  Google Scholar 

  12. Yang, Z., Fan, P., & Karagiannidis, G. K. (2015). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.

    Article  Google Scholar 

  13. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy trade-off. IEEE Transactions on Wireless Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  14. Gastpar, M. (2007). On capacity under receive and spatial spectrum-sharing constraints. IEEE Transactions on Information Theory, 53(2), 471–487.

    Article  Google Scholar 

  15. Letaief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.

    Article  Google Scholar 

  16. Simeone, O., Stanojev, l, Savazzi, S., Bar-Ness, Y., Spagnolini, U., & Pickholtz, R. L. (2008). Spectrum leasing to cooperating secondary ad hocnetworks. IEEE Journal Selected Areas Communications, 26(1), 203–213.

    Article  Google Scholar 

  17. Stanojev, L., Simeone, O., Spagnolini, U., Bar-Ness, Y., & Pickholtz, R. L. (2010). Cooperative ARQ via auction-based spectrum leasing. IEEE Transactions on Communications, 58(6), 1843–1856.

    Article  Google Scholar 

  18. Lee, K., Simeone, O., Chae, C. B., & Kang, J. (2011). Spectrum leasing via cooperation for enhanced physical-layer secrecy. In Proc. of IEEE ICC, Kyoto, Japan, June 2011.

  19. Park, S., & Hong, D. (2014). Achievable throughput of energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 13(2), 1010–1022.

    Article  Google Scholar 

  20. Shafie, A., & Sultan, A. (2013). Optimal random access for a cognitive radio terminal with energy harvesting capability. IEEE Wireless Communications Letters, 17(6), 1128–1131.

    Article  Google Scholar 

  21. Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12(12), 6166–6179.

    Article  Google Scholar 

  22. Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.

    Article  Google Scholar 

  23. Papoulis, A., Pillai, S. U. (2002). Probability, Random Variables, and Stochastic Processes. (4th ed.). McGaw-Hill Inc.

  24. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products. New York, NY: Academic Press.

    Google Scholar 

  25. Rohatgi, V. K. (1976). An introduction to probability theory and mathematical statistics. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Appendices

Appendix A: Proof of Proposition 1

Firstly, we can rewrite (9) as below expression

$$\begin{aligned} {\gamma _{SR}} = \frac{X}{{Y + 1}} \end{aligned}$$
(31)

where \(X = \frac{{{P_{S\min }}}}{{{\sigma ^2}}}{\left| {{h_{sr}}} \right| ^2}\), \(Y = \sum _{i = 1}^L {\frac{{{P_T}}}{{{\sigma ^2}}}} {\left| {{h_{pr[i]}}} \right| ^2}\). X is the exponential distributed random variable (ERV) with mean \({\lambda _{sr}} = \frac{{{P_{S\min }}}}{{{\sigma ^2}}}P{L_{sr}}\), Y is the sum of ERVs, in which each part has mean \({\lambda _{pr[i]}} = \frac{{{P_T}}}{{{\sigma ^2}}}P{L_{pr[i]}}\),respectively. By applying Lemma 1, the pdf(Y) and cdf(Y) are proven. Probability of (31) in (10) is solved by separating two cases:

$$\begin{aligned} \Pr \left( {\frac{X}{{Y + 1}} \le \gamma _s } \right)= & {} \left\{ {\begin{array}{*{20}l} {\Pr \left( {Y \ge \frac{{X - \gamma _s }}{{\gamma _s }}} \right) , \qquad X \ge \gamma _s } \\ {\Pr \left( {Y \ge \frac{{X - \gamma _s }}{{\gamma _s }}} \right) = 1 ,X< \gamma _s } \\ \end{array}} \right. \quad \nonumber \\= & {} 1 - \int \limits _{\gamma _s }^\infty {f_X \left( x \right) } \Pr \left( {Y < \frac{{X - \gamma _s }}{{\gamma _s }}} \right) dx\nonumber \\ \end{aligned}$$
(32)

and vice versa.

After reducing (32), we obtain the express as in (15).

Appendix B: Proof of Propostion 2

From (20) we can write:

$$\begin{aligned}&{F_{SD}}({\gamma _{SD}}) \nonumber \\&\quad = \underbrace{\Pr \left( {{P_{REH}} > {P_R}} \right) }_{1 - {\mathfrak {K}}}\underbrace{\Pr \left( {\frac{{\frac{{{P_R}}}{{{\sigma ^2}}}{{\left| {{h_{rd}}} \right| }^2}}}{{\sum \nolimits _{i = 1}^L {\frac{{{P_{PT[i]}}}}{{{\sigma ^2}}}{{\left| {{h_{pd[i]}}} \right| }^2}} + 1}} \leqslant {\gamma _s}} \right) }_{\mathfrak {M}}\nonumber \\&\qquad + \underbrace{\Pr \left( {{P_{REH}} \leqslant {P_R}} \right) }_{\mathfrak {K}}\underbrace{\Pr \left( {\frac{{\frac{{{P_{REH}}}}{{{\sigma ^2}}}{{\left| {{h_{rd}}} \right| }^2}}}{{\sum \nolimits _{i = 1}^L {\frac{{{P_{PT[i]}}}}{{{\sigma ^2}}}{{\left| {{h_{pd[i]}}} \right| }^2}} + 1}} \leqslant {\gamma _s}} \right) }_{\mathfrak {N}}\nonumber \\ \end{aligned}$$
(33)

We need to solve three subcases: (22), (23) and (24). Firstly, substituting the value of \({P_{REH}}\) in (18) to \(\mathfrak {K}\) form in (33), we receive

$$\begin{aligned} {\mathfrak {K}}&= \Pr \left( {\frac{{2\alpha \delta {\sigma ^2}}}{{1 - \alpha }}\left( {{X_1} + {X_2} +\cdots + {X_L} + {X_{L + 1}} + 1} \right) \leqslant {P_R}} \right) \end{aligned}$$
(34)
$$\begin{aligned}&= \Pr \left( {{X_1} + {X_2} + \cdots + {X_L} + {X_{L + 1}} \leqslant \hat{w}} \right) \end{aligned}$$
(35)

where \({X_i}\): \(i = 1 \div L\): \(f\left( {{X_i}} \right) = \frac{1}{{{\lambda _{pr[i]}}}}{e^{ - \;\frac{x}{{{\lambda _{pr[i]}}}}}}\), \({X_{L + 1}}\): \(f\left( {{X_{L + 1}}} \right) = \frac{1}{{{\lambda _{sr}}}}{e^{ - \;\frac{x}{{{\lambda _{sr}}}}}}\), \(\hat{w} = \frac{{{P_R}\left( {1 - \alpha } \right) }}{{2\alpha \delta {\sigma ^2}}} - 1\). Applying Lemma 1, we obtain (22).

Secondly, \(\mathfrak {M}\) form in (33) is given by

$$\begin{aligned} \mathfrak {M} = \Pr \left( {\frac{U}{{V + 1}} \leqslant {\gamma _s}} \right) \end{aligned}$$
(36)

where

$$\begin{aligned} V = \sum \limits _{i = 1}^L {{V_i}} = \sum \limits _{i = 1}^L {\frac{{{P_{PT[i]}}}}{{{\sigma ^2}}}{{\left| {{h_{pd[i]}}} \right| }^2}} \end{aligned}$$
(37)

is the sum of ERVs, \(U = \frac{{{P_R}}}{{{\sigma ^2}}}{\left| {{h_{rd}}} \right| ^2}\) is ERV. (36) and (31) have similar in form. Thus, we use the same way to obtain (23).

Finally, \(\mathfrak {N}\) form in (33) is expressed as

$$\begin{aligned} \mathfrak {N} = \Pr \left( {\frac{{\frac{{{P_{REH}}}}{{{\sigma ^2}}}{{\left| {{h_{rd}}} \right| }^2}}}{{\sum \nolimits _{i = 1}^L {\frac{{{P_T}}}{{{\sigma ^2}}}{{\left| {{h_{pd[i]}}} \right| }^2}} + 1}} \leqslant {\gamma _s}} \right) \end{aligned}$$
(38)

Let us denote \(T = \frac{{2\alpha \delta }}{{\left( {1 - \alpha } \right) }}{\left| {{h_{rd}}} \right| ^2}\), \(Z = \left( \frac{{{{\text {P}} _{S\min }}}}{{{\sigma ^2}}}{{\left| {{h_{sr}}} \right| }^2}\right. \left. + \sum \nolimits _{i = 1}^L {\frac{{{P_{PT[i]}}}}{{{\sigma ^2}}}{{\left| {{h_{pr[i]}}} \right| }^2} + \,} 1 \right) \),\({P_{REH}}\) in (18), V in (37) can be substituted, we obtain

$$\begin{aligned} \mathfrak {N} = \Pr \left( {\frac{{TZ}}{{V + 1}} \leqslant {\gamma _s}} \right) \end{aligned}$$
(39)

Applying Rohatgi’s well-known results in [25] and formula Eq. 3.471.9 in [24], we have PDF of (\( U=TZ \))

$$\begin{aligned} {f_U}(u)= & {} \left[ {\prod \limits _{i = 1}^{L + 1} {\frac{1}{{{\lambda _{pr[i]}}}}} } \right] \frac{1}{{{\lambda _{rdn}}}}\sum \limits _{j = 1}^{L + 1} {\frac{{2{e^{ + \;\frac{1}{{{\lambda _{pr[j]}}}}}}.{K_0}\left( {2\sqrt{\frac{u}{{{\lambda _{rdn}}.{\lambda _{pr[j]}}}}} } \right) }}{{\prod \nolimits _{k = 1,k \ne j}^{L + 1} {\left( {\frac{1}{{{\lambda _{pr[k]}}}} - \frac{1}{{{\lambda _{pr}}_{[j]}}}} \right) } }}}\nonumber \\ \end{aligned}$$
(40)

where \({\lambda _{^{rdn}}} = P{L_{rd}} \times \frac{{2\alpha \delta }}{{\left( {1 - \alpha } \right) }}\) and pdf(V) is similarly proved in Lemma 1. We can write \(\mathfrak {N}\) as:

$$\begin{aligned} \mathfrak {N}= & {} \left[ {\prod \limits _{i = 1}^{L + 1} {\frac{1}{{{\lambda _{pr[i]}}}}} } \right] \left[ {\prod \limits _{i = 1}^L {\frac{1}{{{\lambda _{pd[i]}}}}} } \right] \frac{1}{{{\lambda _{rdn}}}}\nonumber \\&\times \sum \limits _{m = 1}^{L + 1} {\frac{{{e^{ + \;\frac{1}{{{\lambda _{pr[m]}}}}}}}}{{\prod \nolimits _{k = 1,k \ne m}^{L + 1} {\left( {\frac{1}{{{\lambda _{pr[k]}}}} - \frac{1}{{{\lambda _{pr}}_{[m]}}}} \right) } }}} \nonumber \\&\times \sum \limits _{n = 1}^L {\frac{{\overbrace{\int _0^\infty {\overbrace{\int _0^{{\gamma _s}v} {2{K_0}\left( {2\sqrt{\frac{u}{{{\lambda _{rdn}}{\lambda _{pr[m]}}}}} } \right) } }^{{I_1}}} \,{e^{ - \;\frac{{v - 1}}{{{\lambda _{pd[n]}}}}}}}^{{I_2}}.dudv}}{{\prod \nolimits _{k = 1,k \ne n}^L {\left( {\frac{1}{{{\lambda _{pd[k]}}}} - \frac{1}{{{\lambda _{pd[n]}}}}} \right) } }}}\nonumber \\ \end{aligned}$$
(41)

in which \({I_1}\) is calculated when using Eq. 5.522 in [24] where \( p = -1 \) and \({K_{ - v}} = {K_v}\).

Next, \({I_2}\) is solved when conducted from Eq. 6.643.6 in [24], where \( m = 1 \) and \( \alpha = \frac{{{\lambda _{rdn}}{\lambda _{pr[m]}}}}{{{\gamma _s}{\lambda _{pd[n]}}}} \). After solving (22), (23), (24), Eq. (21) is clearly derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, P.M., Do, DT., Tung, N.T. et al. Energy harvesting assisted cognitive radio: random location-based transceivers scheme and performance analysis. Telecommun Syst 67, 123–132 (2018). https://doi.org/10.1007/s11235-017-0325-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0325-0

Keywords