Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust blind channel estimation algorithm for linear STBC systems using fourth order cumulant matrices

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

A novel blind channel estimation algorithm, based on fourth-order cumulant matrices, is proposed and applied to linear Space–Time Block Coded (STBC) for Multiple Input Multiple Output systems. Contrary to subspace and Second-Order Statistics (SOS) methods, the presented approach estimates the channel matrix without any modification of the transmitter. It takes advantage of the statistical independence of the signals in front of the space–time encoding. In this paper, the presented algorithm estimates the channel matrix by minimizing a cost function based on the higher cumulant matrices after Zero-Forcing equalization to mitigate the computational complexity and improve the performance. We employ the proposed method to the STBC systems including Spatial Multiplexing, Orthogonal, quasi-Orthogonal and Non-Orthogonal STBC systems. Symbol error rate and Normalized Mean Square Error simulations of the proposed algorithm are shown for a different number of users, signal to noise ratios and different number of symbols per user in comparison with subspace and Second-Order Statistics (SOS) methods. The results show that the presented method performs well and outperforms other methods in estimating the channel matrix from the received data. Moreover, the proposed method presents high convergence speed in estimating the channel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alamouti, S. (1998). A simple transmit diversity technique for wireless communication. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  2. Jafarkhani, H. (2005). Space-time coding: Theory and practice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  3. Ammar, N., & Ding, Z. (2006). Channel identiability under orthogonal spacetime coded modulations without training. IEEE Transactions on Wireless Communications, 5(5), 1003–1013.

    Article  Google Scholar 

  4. Guowei, L., Yuanan, L., & Xuefang, X. (2016). Effect of imperfect CSI on STBC-MISO system via antenna selection. IET Signal Processing, 10(2), 115–124.

    Article  Google Scholar 

  5. Swindlehurst, A., & Leus, G. (2002). Blind and semi-blind equalization for generalized spacetime block codes. IEEE Transactions on Signal Processing, 50(10), 2489–2498.

    Article  Google Scholar 

  6. Shahbazpanahi, S., Gershman, A., & Manton, J. (2005). Closed form blind MIMO channel estimation for orthogonal space-time codes. IEEE Transactions on Signal Processing, 53(12), 4506–4517.

    Article  Google Scholar 

  7. Via, J., & Santamaria, I. (2008). On the blind identiability of orthogonal space time block codes from second order statistics. IEEE Transactions on Information Theory, 54(2), 709–722.

    Article  Google Scholar 

  8. Abrudan, T., Eriksson, J., & Koivunen, V. (2008). Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 56(3), 1134–1147.

    Article  Google Scholar 

  9. Via, J., Santamaria, I., & Perez, J. (2009). Code combination for blind channel estimation in general MIMO-STBC systems. EURASIP Journal on Advances in Signal Processing. 2009, 3. https://doi.org/10.1155/2009/103483.

  10. Larsson, E., Stoica, P., & Li, J. (2002). On maximum-likelihood detection and decoding for space-time coding systems. IEEE Transactions on Signal Processing, 50(4), 937–944.

    Article  Google Scholar 

  11. Ma, W., Vo, B., Davidson, T., & Ching, P. (2006). Blind ML detection of orthogonal space-time block codes: Efficient high-performance implementations. IEEE Transactions on Signal Processing, 54(2), 738–751.

    Article  Google Scholar 

  12. Gallo, A., Chiavaccini, E., Muratori, F., & Vitetta, G. (2004). BEM-based SISO detection of orthogonal space-time block codes over frequency at fading channels. IEEE Transactions on Wireless Communications, 3(6), 1885–1889.

    Article  Google Scholar 

  13. Li, Y., Georghiades, C., & Huang, G. (2001). Iterative maximum likelihood sequence estimation for space-time coded systems. IEEE Transactions on Communications, 49(6), 948–951.

    Article  Google Scholar 

  14. Ammar, N., & Ding, Z. (2007). Blind channel identi ability for generic linear spacetime block codes. IEEE Transactions on Signal Processing, 55(1), 202–217.

    Article  Google Scholar 

  15. Jafarkhani, H. (2001). A quasi-orthogonal space-time block code. IEEE Transactions on Communications, 49(1), 1–4.

    Article  Google Scholar 

  16. Eldemerdash, Y. A., Dobre, O. A., & Öner, M. (2016). Signal identification for multiple-antenna wireless systems: Achievements and challenges. IEEE Communications Surveys and Tutorials, 18(3), 1524–1551.

    Article  Google Scholar 

  17. Choqueuse, V., Mansour, A., Burel, G., Collin, L., & Yao, K. (2011). Blind channel estimation for STBC systems using higher-order statistics. IEEE Transactions on wireless Communications, 10(2), 495–505.

    Article  Google Scholar 

  18. Boarui, A., & Ionescu, D. (2003). A class of nonorthogonal rate-one spacetime block codes with controlled interference. IEEE Transactions on Wireless Communications, 2(2), 270–276.

    Article  Google Scholar 

  19. Acar, Y., Doan, H., Baar, E., & Panayirci, E. (2016). Interpolation based pilot-aided channel estimation for STBC spatial modulation and performance analysis under imperfect CSI. IET Communications, 10(14), 1820–1828.

    Article  Google Scholar 

  20. Dapena, A., Prez-Iglesias, H. J., & Zarzoso, V. (2012). Blind channel estimation based on maximizing the eigenvalue spread of cumulant matrices in 2 1 Alamoutis coding schemes. Wireless Communications and Mobile Computing, 12(6), 516–528.

    Article  Google Scholar 

  21. Gao, J., Zhu, X., & Nandi, A. K. (2011). Independent component analysis for multiple-input multiple-output wireless communication systems. Signal Processing, 91(4), 607–623.

    Article  Google Scholar 

  22. Abrudan, T. E., Eriksson, J., & Koivunen, V. (2008). Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 56(3), 1134–1147.

    Article  Google Scholar 

  23. Guobing, Q., Li, L., & Luo, M. (2014). On the blind channel identi ability of MIMO-STBC systems using noncircular complex FastICA algorithm. Circuits System Signal Processing, 33, 1859–1881.

    Article  Google Scholar 

  24. Cardoso, J., & Soloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE proceedings F, 140(46), 362–370.

    Google Scholar 

  25. Luo, M., Li, L., Qian, G., & Liao, H. (2014). Multidimensional blind separation using higher-order statistics: Application to non-cooperative STBC systems. Circuits System Signal Processing, 33, 2173–2192.

    Article  Google Scholar 

  26. Albataineh, Z., & Salem, F. M. (2016). Adaptive blind CDMA receivers based on ICA filtered structures. Circuits, Systems, and Signal Processing. https://doi.org/10.1007/s00034-016-0459-4.

  27. Albataineh, Z., & Salem, F. (2015). Robust blind multiuser detection algorithm using fourth-order cumulant matrices. Circuits, Systems, and Signal Processing, 34, 2577–2595.

    Article  Google Scholar 

  28. Beres, E., & Adve, R. (2007). Blind channel estimation for orthogonal STBC in MISO systems. IEEE Transactions on Vehicular Technology, 56(4), 2042–2050.

    Article  Google Scholar 

  29. Comon, P., & Jutten, C. (Eds.). (2010). Handbook of blind source separation independent component analysis and applications. Oxford: Academic Press.

    Google Scholar 

  30. Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11(1), 157–192.

    Article  Google Scholar 

  31. Marey, M., & Dobre, O. A. (2017). Automatic identification of space-frequency block coding for OFDM systems. IEEE Transactions on Wireless Communications, 16(1), 117–128.

    Article  Google Scholar 

  32. Zhang, B., Yu, J. L., Yuan, Y., et al. (2016). Fast blind channel estimation for space-time block coded MIMO-OFDM systems. Telecommunication Systems. https://doi.org/10.1007/s11235-016-0244-5.

  33. Xianhua, L., Cardoso, J.-F., & Randall, R. B. (2010). Very fast blind source separation by signal to noise ratio based stopping threshold for the SHIBBS/SJAD algorithm. Mechanical Systems and Signal Processing, 24(7), 2096–2103.

    Article  Google Scholar 

  34. Liu, X., & Randall, R. B. (2005). A new efficient independent component algorithm: Joint approximate diagonalization of simplified cumulant matrices. In The 16th national congress of Australian institute of physics, Canberra, Australia.

  35. Cardoso, F. (1994). On the performance of orthogonal source separation algorithms. In Proceedings of the EUSIPCO (pp. 776–779).

  36. Manton, J. (2004). Optimization algorithms exploiting unitary constraints. IEEE Transactions on Signal Processing, 50(3), 635–650.

    Article  Google Scholar 

  37. Tarokh, V., Jafarkhani, H., & Calderbank, A. (1999). Spacetime block coding for wireless communications: Performance results. IEEE Journal on Selected Areas in Communications., 17(3), 451–460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaid Albataineh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albataineh, Z. Robust blind channel estimation algorithm for linear STBC systems using fourth order cumulant matrices. Telecommun Syst 68, 573–582 (2018). https://doi.org/10.1007/s11235-017-0410-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0410-4

Keywords