Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Coupled LBM–DEM Micro-scale Simulations of Cohesive Particle Erosion Due to Shear Flows

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, the erodibility of cohesive micro-scale particles is investigated for a range of surface shear stresses. Compacted layers of particles, formed by compressing 100 cohesive spheres together, are subjected to shear flow conditions. Fluid–particle interactions are solved using the lattice Boltzmann method (LBM), while the particle–particle interactions are treated by coupling with the distinct element method (DEM). Results reveal a clearly defined critical surface shear stress, beyond which erosion occurs, and a linear relation between the rate of erosion and excess surface shear stress. Further to this, an interesting mechanism by which detached particles gain upward movement is observed. This work also serves to highlight the potential of the coupled LBM–DEM approach for modelling dynamic erosion processes in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelhamid, Y., El Shamy, U.: Pore-scale modeling of surface erosion in a particle bed. Int. J. Numer. Anal. Methods 38(2), 142–166 (2014)

    Article  Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  Google Scholar 

  • Black, K., Tolhurst, T., Paterson, D., Hagerthey, S.: Working with natural cohesive sediments. J. Hydraul. Eng. 128(1), 2–8 (2002)

    Article  Google Scholar 

  • Bonelli, S., Marot, D.: Micromechanical modeling of internal erosion. Eur. J. Environ. Civ. Eng. 15(8), 1207–1224 (2011)

    Article  Google Scholar 

  • Boutt, D., Cook, B., McPherson, B., Williams, J.: Direct simulation of fluid–solid mechanics in porous media using the discrete element and lattice-Boltzmann methods. J. Geophys. Res. 112(B10), 1–13 (2007)

    Google Scholar 

  • Boutt, D.F., Cook, B.K., Williams, J.R.: A coupled fluid–solid model for problems in geomechanics: application to sand production. Int. J. Numer. Anal. Methods Geomech. 35(9), 997–1018 (2011)

    Article  Google Scholar 

  • Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382–5392 (1996)

    Article  Google Scholar 

  • Broday, D., Fichman, M., Shapiro, M., Gutfinger, C.: Motion of spheroidal particles in vertical shear flows. Phys. Fluids 10(1), 86–100 (1998)

    Article  Google Scholar 

  • Cavin, A.: Relations between textural characteristics and physical properties of sediments in northwestern Cascadia Basin. Proc. Ocean Drill. Prog. Sci. Res. 168, 67 (2000)

    Google Scholar 

  • Cook, B., Noble, D., Preece, D., Williams, J.: Direct simulation of particle-laden fluids. In: Girard, L., Breeds, D. (eds.) Pacific Rocks, pp. 279–286. Balkema, Rotterdam (2000)

    Google Scholar 

  • Cui, X., Li, J., Chan, A., Chapman, D.: A 2D DEM–LBM study on soil behaviour due to locally injected fluid. Particuology 10(2), 242–252 (2012)

    Article  Google Scholar 

  • Cui, X., Li, J., Chan, A., Chapman, D.: Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe. Powder Technol. 254, 299–306 (2014)

    Article  Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • Debnath, K., Nikora, V., Aberle, J., Westrich, B., Muste, M.: Erosion of cohesive sediments: resuspension, bed load, and erosion patterns from field experiments. J. Hydraul. Eng. 133(5), 508–520 (2007)

    Article  Google Scholar 

  • Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525–541 (2004)

    Article  Google Scholar 

  • Dijkstra, M.: Capillary freezing or complete wetting of hard spheres in a planar hard slit? Phys. Rev. Lett. 93(10), 108303 (2004)

    Article  Google Scholar 

  • Feng, Y.T., Han, K., Owen, D.R.J.: Combined three-dimensional lattice Boltzmann method and discrete element method for modelling fluid–particle interactions with experimental assessment. Int. J. Numer. Methods Eng. 81(2), 229–245 (2010)

    Google Scholar 

  • Fortini, A., Dijkstra, M.: Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement. J. Phys. Condens. Matter 18(28), L371 (2006)

    Article  Google Scholar 

  • Galindo-Torres, S., Scheuermann, A., Mühlhaus, H., Williams, D.: A micro-mechanical approach for the study of contact erosion. Acta Geotech. 1–12 (2013). doi:10.1007/s11440-013-0282-z

  • Gallier, S., Lemaire, E., Lobry, L., Peters, F.: A fictitious domain approach for the simulation of dense suspensions. J. Comput. Phys. 256, 367–387 (2014)

    Article  Google Scholar 

  • Golay, F., Bonelli, S.: Numerical modeling of suffusion as an interfacial erosion process. Eur. J. Environ. Civ. Eng. 15(8), 1225–1241 (2011)

    Article  Google Scholar 

  • Grabowski, R.C., Droppo, I.G., Wharton, G.: Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci. Rev. 105(3–4), 101–120 (2011)

    Article  Google Scholar 

  • Han, Y., Cundall, P.A.: Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media. Int. J. Numer. Methods Fluids 67(11), 1720–1734 (2011a)

    Article  Google Scholar 

  • Han, Y., Cundall, P.A.: Resolution sensitivity of momentum-exchange and immersed boundary methods for solid–fluid interaction in the lattice Boltzmann method. Int. J. Numer. Methods Fluids 67(3), 314–327 (2011b)

    Article  Google Scholar 

  • Han, Y., Cundall, P.A.: Lbm-dem modeling of fluid–solid interaction in porous media. Int. J. Numer. Anal. Methods Geomech. 37(10), 1391–1407 (2013)

    Article  Google Scholar 

  • He, X., Luo, L.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811–6817 (1997)

    Article  Google Scholar 

  • He, X., Zou, Q., Luo, L., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87(1–2), 115–136 (1997)

    Article  Google Scholar 

  • Holdych, D.: Lattice Boltzmann methods for diffuse and mobile interfaces. PhD thesis, University of Illinois at Urbana, Champaign (2003)

  • Israelachvili, J.N.: Intermolecular and Surface Forces: Revised, 3rd edn. Academic Press, London (2011)

    Google Scholar 

  • Kloss, C., Goniva, C.: Liggghts—a new open source discrete element simulation software. In: Proceedings of the 5th International Conference on Discrete Element Methods, London, UK, 25–26 Aug. ISBN: 978-0-9551179-8-5 (2010)

  • Kloss, C., Goniva, C.: Liggghts an open source discrete element simulations of granular materials based on lammps. In: Proceedings of the TMS Annual Meeting, pp. 781–788. San Diego (2011)

  • Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. 12(2/3), 140–152 (2012)

    Article  Google Scholar 

  • Krone, R.B.: Effects of bed structure on erosion of cohesive sediments. J. Hydraul. Eng. 125(12), 1297–1301 (1999)

    Article  Google Scholar 

  • Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)

    Article  Google Scholar 

  • Lick, W., McNeil, J.: Effects of sediment bulk properties on erosion rates. Sci. Total Environ. 266(1–3), 41–48 (2001)

    Article  Google Scholar 

  • Lominè, F., Scholtès, L., Sibille, L., Poullain, P.: Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion. Int. J. Numer. Anal. Methods Geomech. 37(6), 577–596 (2013)

    Article  Google Scholar 

  • Lundkvist, M., Grue, M., Friend, P., Flindt, M.: The relative contributions of physical and microbiological factors to cohesive sediment stability. Cont. Shelf Res. 27(8), 1143–1152 (2007)

    Article  Google Scholar 

  • Mansouri, M., Delenne, J., El Youssoufi, M., Seridi, A.: A 3D DEM–LBM approach for the assessment of the quick condition for sands. C. R. Méc. 337(9–10), 675–681 (2009)

    Article  Google Scholar 

  • McAnally, W. H., Mehta, A. J.: Coastal and estuarine fine sediment processes. In: Proceedings of Marine Science, vol. 3, p. 540. Elsevier Science, Amsterdam (2001)

  • Mitchener, H., Torfs, H.: Erosion of mud/sand mixtures. Coast. Eng. 29(1–2), 1–25 (1996)

    Article  Google Scholar 

  • Noble, D.R., Torczynski, J.R.: A lattice-Boltzmann method for partially saturated computational cells. Int. J. Mod. Phys. C 9(8), 1189–1201 (1998)

    Article  Google Scholar 

  • Owen, D.R.J., Leonardi, C.R., Feng, Y.T.: An efficient framework for fluid–structure interaction using the lattice Boltzmann method and immersed moving boundaries. Int. J. Numer. Methods Eng. 87(1–5), 66–95 (2010)

    Google Scholar 

  • Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for the Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  Google Scholar 

  • Silbert, L.E.E.D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  Google Scholar 

  • Sterpi, D.: Effects of the erosion and transport of fine particles due to seepage flow. Int. J. Geomech. 3(1), 111–122 (2003)

    Article  Google Scholar 

  • Tchistiakov, A.: Physico-chemical aspects of clay migration and injectivity decrease of geothermal classic reservoirs. In: Proceedings of World Geothermal Congress, pp. 3087–3095. Kyushu-Tohoku, Kyushu-Tohoku, Japan (2000)

  • Tolhurst, T., Black, K., Paterson, D., Mitchener, H., Termaat, G., Shayler, S.: A comparison and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments. Cont. Shelf Res. 20(10–11), 1397–1418 (2000)

    Article  Google Scholar 

  • Yamamoto, K.: Methane hydrate bearing sediments: a new subject of geomechanics. In: International Association for Computer Methods and Advances in Geomechanics (IACMAG).Goa, India (2008)

  • Zhang, H., Tan, Y., Shu, S., Niu, X., Trias, F.X., Yang, D., Li, H., Sheng, Y.: Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling. Comput. Fluids 94, 37–48 (2014)

    Article  Google Scholar 

  • Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for excellent insight, advice, and corrections, which have markedly improved this paper. This research was entrusted by the Ministry of Economy, Trade, and Industry, Japan and the MH21 Research Consortium, as a part of the research group for production method and modelling of methane hydrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Sato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brumby, P.E., Sato, T., Nagao, J. et al. Coupled LBM–DEM Micro-scale Simulations of Cohesive Particle Erosion Due to Shear Flows. Transp Porous Med 109, 43–60 (2015). https://doi.org/10.1007/s11242-015-0500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0500-2

Keywords