Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Arc Evaporation of Ti–Al–Ta–N Coatings: The Effect of Bias Voltage and Ta on High-temperature Tribological Properties

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Recently, titanium aluminium tantalum nitride (Ti–Al–Ta–N) coatings have been shown to exhibit beneficial properties for cutting applications. However, the reason for the improved behaviour of these coatings in comparison to unalloyed Ti–Al–N is not yet clear. Here, we report on the tribological mechanisms present in the temperature range between 25 and 900 °C for this coating system, and in particular on the effect of the bias voltage during deposition on the tribological response. Based on these results, we provide an explanation for the improved performance of Ta-alloyed coatings. An industrial-scale cathodic arc evaporation facility was used to deposit the coatings from powder metallurgically produced Ti40Al60 and Ti38Al57Ta5 targets at bias voltages ranging from −40 to −160 V. X-ray diffraction experiments displayed a change with increasing bias voltage from a dual-phase structure containing cubic and hexagonal phases to a single-phase cubic structure. Investigations of the wear behaviour at various temperatures showed different controlling effects in the respective temperature ranges. The results of dry sliding tests at room temperature were independent of bias voltage and Ta-alloying, where the atmosphere, i.e. moisture and oxygen, were the most important parameters during the test. At 500 °C, bias and droplet-generated surface roughness were identified to determine the tribological behaviour. At 700 and 900 °C, wear depended on the coating’s resistance to oxidation, which was also influenced by the bias voltage. In conclusion, Ta-alloyed coatings show a significantly higher resistance to oxidation than unalloyed Ti–Al–N which could be an important reason for the improved performance in cutting operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. PalDey, S., Deevi, S.C.: Single layer, multilayer wear resistant coatings of (Ti, Al)N: a review. Mater. Sci. Eng. A 342, 58–79 (2003)

    Article  Google Scholar 

  2. Knotek, O., Böhmer, M., Leyendecker, T.: On structure and properties of sputtered Ti and Al based hard compound films. J. Vac. Sci. Technol. A4(6), 2695–2700 (1986)

    Google Scholar 

  3. Coll, B.F., Fontana, R., Gates, A., Sathrum, P.: (Ti–Al)N advanced films prepared by arc process. Mater. Sci. Eng. A140, 816–824 (1991)

    CAS  Google Scholar 

  4. Kathrein, M., Michotte, C., Penoy, M., Polcik, P., Mitterer C.: Multifunctional multi-component PVD coatings for cutting tools. Surf. Coat. Technol. 200, 1867–1871 (2005)

    Article  CAS  Google Scholar 

  5. Kutschej, K., et al.: Multi-functional multi-component TiAlN based coatings. In: Kneringer, G., Roedhammer, P., Wildner, H. (eds.) Proceedings of the 16th International Plansee Seminar 2005, vol. 2, pp. 774–788. Plansee Holding AG, Reutte, Tyrol, Austria (2005)

  6. Petrov, .I., Barna, P.B., Hultman, L., Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, 117–128 (2003)

    Article  CAS  Google Scholar 

  7. Ljungcrantz, H., Hultman, L., Sundgren, J.-E.: Ion induced stress generation in arc-evaporated TiN films. J. Appl. Phys. 78, 832–837 (1995)

    Article  CAS  Google Scholar 

  8. Sato, K., Ichimiya, N., Kondo, A., Tanaka, Y.: Microstructure and mechanical properties of cathodic arc ion-plated (Al, Ti)N coatings. Surf. Coat. Technol. 163164, 135–143 (2003)

    Article  Google Scholar 

  9. Ahlgren, M., Blomqvist, H.: Influence of bias variation on residual stress and texture in TiAlN PVD coatings. Surf. Coat. Technol. 200, 157–160 (2005)

    Article  CAS  Google Scholar 

  10. Durand-Drouhin, O., Santana, A.E., Karimi, A., Derflinger, V.H., Schütze, A.: Mechanical properties and failure modes of TiAl(Si)N single and multilayer thin films. Surf. Coat. Technol. 163164, 260–266 (2003)

    Article  Google Scholar 

  11. Pfeiler, M., Kutschej, K., Penoy, M., Michotte, C., Mitterer, C., Kathrein, M.: The influence of bias voltage on structure and mechanical/tribological properties of arc evaporated Ti–Al–V–N coatings. Surf. Coat. Technol. 202, 1050–1054 (2007)

    Article  CAS  Google Scholar 

  12. Kutschej, K., Mayrhofer, P.H., Kathrein, M., Polcik, P., Mitterer, C.: A new low-friction concept for TiAlN based coatings in high-temperature applications. Surf. Coat. Technol. 188189, 358–363 (2004)

    Article  CAS  Google Scholar 

  13. Kutschej, K., Fateh, N., Mayrhofer, P.H., Kathrein, M., Polcik, P., Mitterer, C.: Comparative study of TiAlN coatings alloyed with Hf, Nb and B. Surf. Coat. Technol. 200, 113–117 (2005)

    Article  CAS  Google Scholar 

  14. Vaz, F., Rebouta, L., Andritschky, M., da Silva, M.F., Soares, J.C.: Oxidation resistance of (Ti, Al, Si)N coatings in air. Surf. Coat. Technol. 98, 912–917 (1998)

    Article  CAS  Google Scholar 

  15. Mayrhofer, P.H., Music, D., Schneider, J.M.: Influence of the Al distribution on the structure, elastic properties and phase stability of supersaturated TiAlN. J. Appl. Phys. 100, 1–5 (2006)

    Article  Google Scholar 

  16. Mayrhofer, P.H., Hoerling, A., Karlsson, L., Sjoelen, J., Larsson, T., Mitterer, C., Hultman, L.: Self-organized nanostructures in the Ti–Al–N system. Appl. Phys. Lett. 83, 2049–2051 (2003)

    Article  CAS  Google Scholar 

  17. Odén, M., Almer, J., Håkansson, G.: The effect of bias voltage and annealing on the microstructure and residual stress of arc-evaporated Cr–N coatings. Surf. Coat. Technol. 120121, 272–276 (1999)

    Article  Google Scholar 

  18. Vlasveld, A.C., Harris, S.G., Doyle, E.D., Lewis, D.B., Münz, W.-D.: Characterisation and performance of partially filtered arc TiAlN coatings. Surf. Coat. Technol. 149, 217–224 (2002)

    Article  CAS  Google Scholar 

  19. Zhou, M., Makino, Y., Nose, M., Nogi, K.: Phase transition and properties of TiAlN thin films prepared by r.f.-plasma assisted magnetron sputtering. Thin Solid Films 339, 203–208 (1999)

    Article  CAS  Google Scholar 

  20. Cremer, R., Reichert, K., Neuschütz, D.: A composition spread approach to the optimization of (Ti, Al)N hard coatings deposited by DC and bipolar pulsed magnetron sputtering. Surf. Coat. Technol. 142144, 642–648 (2001)

    Article  Google Scholar 

  21. Knuyt, G., Quaeyhaegens, C., D`Haen, J., Stals, L.M.: A model for texture evolution in a growing film. Surf. Coat. Technol. 76–77, 311–315 (1995)

    Article  Google Scholar 

  22. Iordanova, I., Kelly, P.J., Mirchev, R., Antonov, V.: Crystallography of magnetron sputtered TiN coatings on steel substrates. Vacuum 81, 830–842 (2007)

    Article  CAS  Google Scholar 

  23. Gall, D., Kodambaka, S., Wall, M.A., Petrov, I., Greene, J.E.: Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study. J. Appl. Phys. 93, 9086–9094 (2003)

    Article  CAS  Google Scholar 

  24. Meier zu Köcker, G., Gross, T., Santner, E.: Influence of the testing parameters on the tribological behaviour of self-mated PVD-coatings. Wear 179, 5–10 (1994)

    Article  Google Scholar 

  25. Konca, E., Cheng, Y.-T., Weiner, A.M., Dasch, J.M., Erdemir, A., Alpas, A.T.: Transfer of 319 Al alloy to titanium diboride and titanium nitride based (TiAlN, TiCN, TiN) coatings: effects of sliding speed, temperature and environment. Surf. Coat. Technol. 200, 2260–2270 (2005)

    Article  CAS  Google Scholar 

  26. Olefjord, I., Nylund, A.: Surface analysis of oxidized aluminium: oxidation of aluminium in dry and humid atmosphere studied by ESCA, SEM, SAM and EDX. Surf. Interface Anal.. 21, 290–297 (1994)

    Article  CAS  Google Scholar 

  27. Beake, B.D., Smith, J.F., Gray, A., Fox-Rabinovich, G.S., Veldhuis, S.C., Endrino, J.L.: Investigating the correlation between nanoimpact fracture resistance and hardness/modulus ratio from nanoindentation at 25–500°C and the fracture resistance and lifetime of cutting tools with TiAlN PVD coatings in milling operations. Surf. Coat. Technol. 201, 4585–4593 (2007)

    Article  CAS  Google Scholar 

  28. Rabinowicz, E.: Friction and Wear of Materials, pp. 86–90. John Wiley and Sons Inc., New York, London, Sydney (1995)

    Google Scholar 

Download references

Acknowledgements

Financial support by the Austrian Kplus Competence Center Programme is gratefully acknowledged. Marisa Rebelo de Figueiredo from the Christian Doppler Laboratory for Advanced Hard Coatings, University of Leoben, Austria, is acknowledged for experimental support on tribological tests in various atmospheres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pfeiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiler, M., Fontalvo, G.A., Wagner, J. et al. Arc Evaporation of Ti–Al–Ta–N Coatings: The Effect of Bias Voltage and Ta on High-temperature Tribological Properties. Tribol Lett 30, 91–97 (2008). https://doi.org/10.1007/s11249-008-9313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9313-6

Keywords