Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Urban ecosystems and sustainable urban development—analysing and assessing interacting systems in the Stockholm region

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

In order to build competence for sustainability analysis and assessment of urban systems, it is seen as essential to build on models representing urban form, landuse and transportation, urban metabolism, as well as ecological processes. This type of analysis of interacting sub-systems requires an advanced model integration platform, yet open for learning and for further development. Moreover, since the aim is to increase urban experience with ecosystem management in the wide sense, the platform needs to be open and easily available, with high visualisation capacity. For this purpose, the LEAM model was applied to the Stockholm Region and two potential future scenarios were developed, resulting from alternative policies. The scenarios differed widely and the dense urban development of Scenario Compact could be visualised, destroying much of the Greenstructure of Stockholm, while Scenario Urban Nature steered the development more to outer suburbs and some sprawl. For demonstration of the need for further development of biodiversity assessment models, a network model tied to a prioritised ecological profile was applied and altered by the scenarios. It could be shown that the Greenstructure did not support this profile very well. Thus, there is a need for dynamic models for negotiations, finding alternative solutions and interacting with other models. The LEAM Stockholm case study is planned to be further developed, to interact with more advanced transport and land use models, as well as analysing energy systems and urban water issues. This will enable integrated sustainability analysis and assessment of complex urban systems, for integration in the planning process in Stockholm as well as for comparative sustainability studies between different cities, with the goal to build more sustainable urban systems and to increase urban experiences in ecosystem management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberti M (2008) Urban patterns and ecosystem function. Ch 3. In: Alberti M (ed) Advances in urban ecology—integrating humans and ecological processes in urban ecosystems. Springer US, New York, pp 61–92

    Chapter  Google Scholar 

  • Alberti M (2010) Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr Opin Environ Sustain 2:178–184

    Article  Google Scholar 

  • Alberti M, Booth D, Hill K, Coburn B, Avolio C, Coe S, Spirandelli D (2007) The impact of urban patterns on aquatic ecosystems: an empirical analysis in Puget lowland sub-basins. Landsc Urban Plann 80:345–361

    Article  Google Scholar 

  • Balfors B, Mörtberg U, Gontier M, Brokking P (2005) Impacts of region-wide urban development on biodiversity in strategic environmental assessment. J Environ Assess Pol Manag 7:229–246

    Article  Google Scholar 

  • Batty M (2008) The size, scale, and shape of cities. Science 319:769–771

    Article  PubMed  CAS  Google Scholar 

  • Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, Steduto P, Mueller A, Komor P, Tol RSJ, Yumkella KK (2011) Considering the energy, water and food nexus: towards an integrated modelling approach. Energ Pol 39:7896–7906

    Article  Google Scholar 

  • Beser M, Algers S (2002) SAMPERS—The New Swedish National Travel Demand Forecasting Tool. Ch. In. Lundqvist L, Mattsson L-G (eds) National transport models: recent developments and prospects: Springer

  • Bodin Ö, Zetterberg A (2010) MatrixGreen v 1.6.4 User's Manual: Landscape Ecological Network Analysis Tool (www.matrixgreen.org). Stockholm Resilience Centre and KTH Royal Institute of Technology: Stockholm

  • Boone C, Cook E, Hall S, Nation M, Grimm N, Raish C, Finch D, York A (2012) A comparative gradient approach as a tool for understanding and managing urban ecosystems. Urban Ecosystems: 1–13

  • Breuste J, Haase D, Elmqvist T (2011) Urban landscapes and ecosystem services. In: Sandhu H, Wratten S, Cullen R, Costanza R (eds) ES2: ecosystem services in engineered systems. Wiley-Blackwell, Oxford

    Google Scholar 

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278

    Article  Google Scholar 

  • Dale MRT, Fortin MJ (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38

    Article  Google Scholar 

  • Deal B, Pallathucheril V (2008) Simulating regional futures: the land-use evolution and impact assessment model (LEAM). Ch. In: Braill R (ed) Planning support systems for cities and regions. Lincoln Institute of Land Policy, Cambridge, MA, pp 61–84

    Google Scholar 

  • Deal B, Pallathucheril V (2009) Sustainability and urban dynamics: assessing future impacts on ecosystem services. Sustain 1:346–362

    Article  Google Scholar 

  • Deal B, Pallathucheril V, Sun Z, Terstriep J, Hartel W (2005) LEAM Technical Document: Overview of the LEAM Approach. University of Illinois at Urbana-Champaign, 76 pp

  • Deal B, Schunk D (2004) Spatial dynamic modeling to urban land use transformation: a simulation approach to assessing the costs of urban sprawl. Ecol Econ 51:79–95

    Article  Google Scholar 

  • Dearborn D, Kark S (2010) The motivation for conserving urban biodiversity. Conserv Biol 24:432–440

    Article  PubMed  Google Scholar 

  • Doerr VAJ, Barrett T, Doerr ED (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson et al. J Appl Ecol 48:143–147

    Article  Google Scholar 

  • El-Sayed Mohamed Mahgoub M, van der Steen NP, Abu-Zeid K, Vairavamoorthy K (2010) Towards sustainability in urban water: a life cycle analysis of the urban water system of Alexandria City, Egypt. J Clean Prod 18:1100–1106

    Article  Google Scholar 

  • ESRI (2009) ArcGIS Version 10 [GIS Application], Environmental Systems Research Institute, Inc., Redlands, CA

  • European Environment Agency (2006) Urban sprawl in Europe: The ignored challenge. EEA Report. No 10/2006. Copenhagen 60 pp

  • Forman RTT, Godron M (1986) Landscape ecology. John Wiley & Sons, New York

    Google Scholar 

  • Freeman L (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Article  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  PubMed  CAS  Google Scholar 

  • Heaps C (2008) LEAP User Guide. Stockholm Environment Institute. Stockholm

  • Hepinstall-Cymerman H, Coe S, Alberti M (2009) Using urban landscape trajectories to develop a multi-temporal land cover database to support ecological modeling. Rem Sens 1:1373–1379

    Google Scholar 

  • Hepinstall J, Alberti M, Marzluff J (2008) Predicting land cover change and avian community responses in rapidly urbanizing environments. Landsc Ecol 23:1257–1276

    Article  Google Scholar 

  • Hostetler M, Allen W, Meurk C (2011) Conserving urban biodiversity? Creating green infrastructure is only the first step. Landsc Urban Plann 100:369–371

    Article  Google Scholar 

  • Hunt JD, Simmonds DC (1992) Theory and application of an integrated land-use and transport modeling framework. Environ Plann Plann Des 20:221–244

    Article  Google Scholar 

  • International Energy Agency (2008) World Energy Outlook 2008: Technical Report, International Energy Agency/OECD, pp 578

  • Johst K, Drechsler M, van Teeffelen AJA, Hartig F, Vos CC, Wissel S, Wätzold F, Opdam P (2011) Biodiversity conservation in dynamic landscapes: trade-offs between number, connectivity and turnover of habitat patches. J Appl Ecol 48:1227–1235

    Article  Google Scholar 

  • Jongman RHG, Külvik M, Kristiansen I (2004) European ecological networks and greenways. Landsc Urban Plann 68:305–319

    Article  Google Scholar 

  • Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Grübler A, Huntley B, Jäger J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore B III, O'Riordan T, Svedin U (2001) Environment and development: sustainability science. Science 292:641–642

    Article  PubMed  CAS  Google Scholar 

  • Keirstead J, Schulz NB (2010) London and beyond: taking a closer look at urban energy policy. Energ Pol 38:4870–4879

    Article  Google Scholar 

  • Kennedy CA, Cuddihy J, Engel Yan J (2007) The changing metabolism of cities. J Ind Ecol 11:43–59

    Article  CAS  Google Scholar 

  • Klosterman RE (2012) Simple and complex models. Environment and Planning B: Planning and Design 39:1–6

    Google Scholar 

  • Länsstyrelsen (2011) Länsstyrelsernas GIS-tjänster. http://www.gis.lst.se/. Accessed 30 May 2011

  • Lantmäteriet (2011) GSD Landcover Data, Lantmäteriet

  • Luck GW (2007) A review of the relationships between human population density and biodiversity. Biol Rev 82:607–645

    Article  PubMed  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782

    Article  PubMed  Google Scholar 

  • Mörtberg UM, Balfors B, Knol WC (2007) Landscape ecological assessment: a tool for integrating biodiversity issues in strategic environmental assessment and planning. J Environ Manag 82:457–470

    Article  Google Scholar 

  • Mörtberg UM, Zetterberg A, Brokking Balfors B (2012) Urban landscapes in transition: lessons from integrating biodiversity and habitat modelling in planning. Journal of Environmental Assessment Policy and Management: 1250002, 31 pp

  • Nissing C, von Blottnitz H (2010) An economic model for energisation and its integration into the urban energy planning process. Energ Pol 38:2370–2378

    Article  Google Scholar 

  • Office of Regional Planning 2001. Regional utvecklingsplan 2001 för Stockholmsregionen—RUFS 2001. Stockholm County Council. Stockholm, 152 pp [In Swedish]

  • Office of Regional Planning 2010. Förslag till regional utvecklingsplan för Stockholmsregionen—RUFS 2010. Så blir vi Europas mest attraktiva storstadsregion. Stockholm County Council. Stockholm, pp 262. [In Swedish]

  • Opdam P, Steingrover E (2008) Designing metropolitan landscapes for biodiversity: deriving guidelines from metapopulation ecology. Landsc J 27:69–80

    Article  Google Scholar 

  • Opdam P, Steingröver E, van Rooij S (2006) Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes. Landsc Urban Plann 75:322–332

    Article  Google Scholar 

  • Ortúzar JdD, Willumsen LG (2001) Modelling Transport: Wiley, 586 pp

  • Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36

    Article  Google Scholar 

  • Patterson Z, Bierlaire M (2010) Development of prototype UrbanSim models. Environ Plann Plann Des 37:344–366

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Poyat RV, Zipperer WC, Constanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:122–157

    Article  Google Scholar 

  • Qureshi S, Hasan Kazmi SJ, Breuste JH (2010) Ecological disturbances due to high cutback in the green infrastructure of Karachi: analyses of public perception about associated health problems. Urban Forest Urban Greening 9:187–198

    Article  Google Scholar 

  • Ricketts T, Imhoff M (2003) Biodiversity, urban areas, and agriculture: locating priority ecoregions for conservation. Conserv Ecol 8:1

    Google Scholar 

  • Rosenzweig ML (2003) Win-win ecology: how earth species can survive in the midst of human enterprise. Oxford University Press, New York

    Google Scholar 

  • Rui Y, Ban Y (2011) Urban growth modeling with road network expansion and land use development. Advances in cartography and GIScience, vol 2. Springer, Berlin Heidelberg, pp 399–412

    Book  Google Scholar 

  • Ruth M, Coelho D (2007) Understanding and managing the complexity of urban systems under climate change. Clim Pol 7:317–336

    Google Scholar 

  • Spatari S, Yu Z, Montalto FA (2011) Life cycle implications of urban green infrastructure. Environ Pollut 159:2174–2179

    Article  PubMed  CAS  Google Scholar 

  • Statistics Sweden (2006) Population data. Statistics Sweden

  • Strohbach MW, Arnold E, Haase D (2012) The carbon footprint of urban green space—a life cycle approach. Landsc Urban Plann 104:220–229

    Article  Google Scholar 

  • Swedish Transport Agency (2011) The National Road Database. https://lastkajen.trafikverket.se. Accessed 30 May 2011

  • Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landsc Urban Plann 81:167–178

    Article  Google Scholar 

  • UNEP (2007) Report of the Cities and Biodiversity: Achieving the 2010 Diversity Target. United Nations Environment Programme, 25 pp

  • United Nations (2009) Planning sustainable cities—Global report on human settlements. United Nations Human Settlements Programme, UN Habitat, 338 pp

  • Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12:260–273

    Article  PubMed  Google Scholar 

  • van Bueren E, van Bohemen H, Itard L, Visscher H (eds) (2012) Sustainable urban environments, an ecosystem approach. Springer, Dordrecht, p 429

    Google Scholar 

  • Von Thünen JH (1826) Der Isolirte Staat (The Isolated State)

  • Vos CC, Verboom J, Opdam PFM, ter Braak CJ (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41

    Article  PubMed  CAS  Google Scholar 

  • Waddell P, Ulfarsson GF, Franklin JP, Lobb J (2007) Incorporating land use in metropolitan transportation planning. Transport Res Pol Pract 41:382–410

    Article  Google Scholar 

  • Wu J (2008) Making the case for landscape ecology: an effective approach to urban sustainability. Landsc J 27:41–50

    Article  Google Scholar 

  • Wu J, Buyantuyev A, Jenerette GD, Litteral J, Neil K, Shen W (2012) Quantifying spatiotemporal patterns and ecological efforts of urbanisation: a multiscale landscape approach. Ch 4 in Richter M, Weiland U (eds). Applied Urban Ecology: A Global Framework: Blackwell Publishing Ltd

  • Yates D, Sieber J, Purkey D, Huber Lee A (2005) WEAP21: a demand, priority, and preference driven water planning model: part 1, model characteristics. Water Int 30:487–500

    Article  CAS  Google Scholar 

  • Zetterberg A, Mörtberg U, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plann 95:181–191

    Article  Google Scholar 

  • Zetterberg A, Mörtberg U, Bodin Ö, Saura S (2011) Sprawl or dense?: Assessing impacts of regional development plans on landscape network connectivity. In: Zetterberg, A. Connecting the dots: Network analysis, landscape ecology, and practical applications. Doctoral thesis, Dept of Land and Water Resources Engineering, KTH Royal Institute of Technology, Stockholm, TRITA-LWR PHD 1062

  • Zhang Y, Li S, Fath BD, Yang Z, Yang N (2011) Analysis of an urban energy metabolic system: comparison of simple and complex model results. Ecol Model 223:14–19

    Article  Google Scholar 

Online resources

Download references

Acknowledgements

This international cooperation between KTH Royal Institute of Technology, Stockholm, Sweden and University of Illinois, Urbana-Champaigne, USA, was supported by the ABE School Urban Research Cluster at KTH, lead by Professor Vladimir Cvetkovic, to whom we are much obliged. We are also grateful for comments on earlier versions of the manuscript by three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulla Mörtberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mörtberg, U., Haas, J., Zetterberg, A. et al. Urban ecosystems and sustainable urban development—analysing and assessing interacting systems in the Stockholm region. Urban Ecosyst 16, 763–782 (2013). https://doi.org/10.1007/s11252-012-0270-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-012-0270-3

Keywords