Abstract
Representation components of user modeling servers have been traditionally based on simple file structures and database systems. We propose directory systems as an alternative, which offer numerous advantages over the more traditional approaches: international vendor-independent standardization, demonstrated performance and scalability, dynamic and transparent management of distributed information, built-in replication and synchronization, a rich number of pre-defined types of user information, and extensibility of the core representation language for new information types and for data types with associated semantics. Directories also allow for the virtual centralization of distributed user models and their selective centralized replication if better performance is needed. We present UMS, a user modeling server that is based on the Lightweight Directory Access Protocol (LDAP). UMS allows for the representation of different models (such as user and usage profiles, and system and service models), and for the attachment of arbitrary components that perform user modeling tasks upon these models. External clients such as user-adaptive applications can submit and retrieve information about users. We describe a simulation experiment to test the runtime performance of this server, and present a theory of how the parameters of such an experiment can be derived from empirical web usage research. The results show that the performance of UMS meets the requirements of current small and medium websites already on very modest hardware platforms, and those of very large websites in an entry-level business server configuration.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Aha D.W. (1992) Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int. J. Man-Machine Studies 36, 267–287. DOI: 10.1016/0020–7373(92)90018-G
Almeida, V., Bestavros, A., Crovella, M., Oliveira, A.: Characterizing reference locality in the WWW. Fourth International Conference on Parallel and Distributed Information Systems, IEEE Computer Society, 92–103 (1996) DOI: 10.1109/PDIS.1996.568672
Andrews G. (1991) Paradigms for process interaction in distributed programs. ACM Comput. Surveys 23(1): 49–90. DOI: 10.1145/103162.103164
Bigfoot: Bigfoot (2006) http://search.bigfoot.com/.
Borland: Borland VisiBroker (2006) http://www.borland.com/us/products/visibroker/
Bosch G. (1988) ASCON. Memo, SFB 314: AI—Knowledge-Based Systems. Department of Computer, Science Saarland University, Saarbrücken, Germany
Brajnik G., Tasso C. (1994) A shell for developing non-monotonic user modeling systems. Int. J. Human-Computer Studies 40: 31–62. DOI: 10.1006/ijhc.1994.1003
Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), San Francisco, Morgan Kaufmann, pp 43–52 (1998) ftp://ftp.research. microsoft.com/pub/tr/tr-98–12.pdf
Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: evidence and implications. INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, (126–134) (1999) DOI: 10.1109/INFCOM.1999.749260
Bright, A., Kay, J., Ler, D., Ngo, K., Niu, W., Nuguid, A.: Adaptively recommending museum tours. UBICOMP-05 Workshop on Smart Environments and their Applications to Cultural Heritage, Tokyo, Japan (2005) http://smart.arces.unibo.it/pdf/04-Adaptively-Recommending_Bright.pdf.
Brusilovsky, P., Ritter, S., Schwarz, E.: Distributed intelligent tutoring on the Web. AI-ED′97, 8th World Conference on Artificial Intelligence in Education, Kobe, Japan, pp. 482–489. (1997) http://www2.sis.pitt.edu/~peterb/papers/AIED97.html
Carmichael D.J., Kay J., Kummerfeld B. (2005) Consistent modelling of users, devices and sensors in a ubiquitous computing environment. User Model. User-Adapted Interact. J. Personal. Res. 15(3–4): 197–234. DOI: 10.1007/s11257–005–0001-z
Chadwick D. (1996) Understanding X.500: The Directory. London, Thomson
Critical Path.: Critical Path (2006) http://www.cp.net
Datta A., Dutta K., VanderMeer D., Ramamritham K., Navathe S.B. (2001) An architecture to support scalable online personalization on the web. VLDB J. 10, 104–117. DOI: 10.1007/s007780100037
Deep Map.: Deep Map: intelligent, mobile, multi-media and full of knowledge (Project Homepage) (2001) http://www.eml.org/english/research/deepmap/deepmap.html
Duska, B.M., Marwood, D., Feeley, M. J.: The measured access characteristics of world-wide-web client proxy caches. USENIX Symposium on Internet Technologies and Systems, Monterey, CA (1997) http://www.usenix.org/publications/library/proceedings/usits97/duska.html
enQuire: enQuire Identity Server. (2006). http://www.persistentsys.com/products/enquire/enquire.htm.
Excite: Excite Network Online Media Kit.(2006) http://www.excitenetwork.com/advertising/index/id/Directmarket|ListRental|3|1.html.
Fenstermacher, K.D., Ginsburg, M.: Mining client-side activity for personalization. Fourth Workshop on advanced issues in electronic commerce and web information systems (WECWIS), Newport Beach, CA, (2002), pp. 44–51. http://linux.ece.uci.edu/TFEC/wecwis.html
Finin T.W. (1989) GUMS: A general user modeling shell. In: Kobsa A., Wahlster W., (eds) User Models in Dialog Systems. Berlin, Heidelberg, Springer-Verlag, pp. 415–430
Finin T.W., Drager D. (1986) GUMS1: A general user modeling system Sixth Canadian Conference on Artificial Intelligence. Montreal, Canada, pp. 24–29
Fink, J.: Transactional consistency in user modeling systems. In: Kay, J., (ed.) UM99 User Modeling: Proceedings of the Seventh International Conference, pp. 191–200, Wien New York, Springer-Verlag (1999) http://bistrica.usask.ca/UM/UM99/Proc/fink.pdf.
Fink, J.: User modeling servers—Requirements, design, and evaluation. IOS Press, Amsterdam, Netherlands, (2004) http://books.google.com/books?q=isbn:1586034057.
Fink J., Kobsa A. (2000) A review and analysis of commercial user modeling servers for personalization on the world wide web. User Model. User-Adapted Interact. J. Personal. Res. 10(2–3): 209–249. DOI: 10.1023/A:1026597308943
Fink J., Kobsa A. (2002) User modeling in personalized city tours. Artificial Intelligence Rev. 18(1): 33–74. DOI: 10.1023/A:1016383418977
Fink J., Koenemann J., Noller S., Schwab I. (2002) Putting personalization into practice. CACM 45(5): 41–42. DOI: 10.1145/506218.506242
Glassman S. (1994) A caching relay for the world wide web. Computer Networks ISDN Sys. 27(2): 165–172. DOI: 10.1016/0169–7552(94)90130–9
Goldman, A.: Top U.S. ISPs by subscriber: how we count. ISP-Planet, (2005) http://www.isp-planet.com/research/rankings/2005/usa_insight_q32005.html
Goldrei, S., Kay, J., Kummerfeld, B.: Exploiting user models to automate the harvesting of metadata for learning objects. AIED-05 Workshop on Adaptive Systems for Web-Based Education: Tools and Reusability, Amsterdam, Netherlands (2005) http://www.lcc.uma.es/~eva/waswbe05/papers/ .pdf.
Goodman, B., Linton, F., Schoening, J.: Workshop on standards for learner modeling (1997) http://www.cs.usask.ca/UM99/w2.shtml
Gribble, S.D., Brewer, E.A.: System design issues for internet middleware services: deductions from a large client trace. USENIX Symposium on Internet Technologies and Systems, Monterey, CA, (1997) http://www.usenix.org/publications/library/proceedings/usits97/gribble.html
Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff M.: GUMO: The general user model ontology. In: Ardissono, L., Brna P., Mitrovic A., (eds). User Modeling 2005: 10th International Conference, UM 2005, Edinburgh, Scotland, pp. 428–432 (2005) DOI: 10.1007/11527886_58
Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval., New York, pp. 230–237. (1999). DOI: 10.1145/312624.312682
Hill P., Lloyd J. (1993) The Gödel programming language. MIT Press, Cambridge, MA
Howes T., Smith M., Good G. Understanding and deploying LDAP directory services. IN, Macmillan Indianapolis, (1999)
Howes T.A., Smith M. (1997) LDAP: programming directory-enabled applications with lightweight directory access protocol. Macmillan, Indianapolis, IN
IBM: IBM Lotus Notes (2006a) http://www.ibm.com/notes
IBM: IBM Tivoli Directory Server (2006b) http://www-306.ibm.com/software/tivoli/products/ directory-server/
Informix: Informix Product Family. (2006) http://www.ibm.com/software/data/informix/
ISO: Information technology—Database languages—SQL. ISO/IEC 9075:1989, International Standardization Organization, Geneva, Switzerland (1989) http://www.iso.org.
ISO: Information technology—Database languages—SQL. ISO/IEC 9075:2003, International Standardization Organization, Geneva, Switzerland (2003) http://www.iso.org.
ITU-T: Information technology—open systems interconnection—the directory: overview of concepts, models and services. Recommendation X.500 (02/01), International Telecommunication Union (2001) http://www.itu.int/ITU-T/publications/recs.html
IVW: IVW online usage data march 2006, (2006) (in German) http://www.ivwonline.de/ ausweisung2/suchen.php.
Kay J. (1990) um: a toolkit for user modelling. Second International Workshop on User Modeling, Honolulu, HI
Kay J. (1995) The um toolkit for reusable, long term user models. User Model. User-Adapted Interact. J. Personal. Res. 4(3): 149–196. DOI: 10.1007/BF01100243
Kay, J., Kummerfeld, B., Lauder, P.: Personis: a server for user models. In: De Bra, P., Brusilovsky, P., Conejo, R., (eds.) Adaptive Hypermedia and Adaptive Web-Based Systems: Second International Conference, AH 2002. Berlin Heidelberg, Springer-Verlag, pp. 203–212 (2002) http:// springerlink.metapress.com/link.asp?id=2l54yrgc0p8n2d5g
Keung, S., Abbott, S.: LDAP server performance report. (1998) http://www.bnelson.com/sizing/docl/ldapsPerformance.html
Kobsa A. (1990) Modeling the user’s conceptual knowledge in BGP-MS, a user modeling shell system. Comput. Intelligence 6, 193–208
Kobsa, A.: Utilizing knowledge: the components of the SB-ONE knowledge representation workbench. In: Sowa, J. (ed.) Principles of Semantic Networks: Exploration in the Representation of Knowledge. Morgan Kaufmann, San Mateo, CA, pp. 457–486 (1991)
Kobsa A. (2001) Generic user modeling systems. User Model. User-Adapted Interact. J. Personal. Res. 11(1–2): 49–63. DOI: 10.1023/A:1011187500863
Kobsa A., Koenemann J., Pohl W. (2001) Personalized hypermedia presentation techniques for improving customer relationships. Knowledge Eng. Rev. 16(2): 111–155. DOI: 10.1017/S0269888901000108.
Kobsa A. Generic User Modeling Systems In: Brusilovsky, P., Kobsa, A., and Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. Heidelberg, Germany: Springer Verlag (2006, forthcoming).
Kobsa, A., Müller, D., Nill, A.: KN-AHS: an adaptive hypertext client of the user modeling system BGP-MS. Proceedings of the Fourth International Conference on User Modeling, Hyannis, MA pp. 99–105. Reprinted in Maybury, M., Wahlster, W., (eds.) (1998). Readings in Intelligent User Interfaces. Morgan. Kaufman, San Mateo, CA pp. 372–378 (1994) http://www.ics.uci.edu/~kobsa/papers/1994-UM94-kobsa.pdf
Kobsa A., Pohl W. (1995) The BGP-MS user modeling system. User Model. User-Adapted Interact. J. Personal. Res. 4(2): 59–106. DOI: 10.1007/BF01099428
Kobsa, A., Pohl, W., Fink, J.: A standard for the performatives in the communication between applications and user modeling systems (Draft) (1996) http://www.ics.uci.edu/~kobsa/papers/ 1996-kobsa-pohl-fink-rfc.pdf.
Kobsa A., Schreck J. (2003) Privacy through pseudonymity in user-adaptive systems. ACM Trans. Internet Technol. 3(2): 149–183. DOI: 10.1145/767193.767196
Kummerfeld, R., Kay, J.: Remote access protocols for user modelling. Proceedings and Kit for Workshop User Models in the Real World, Chia Laguna, Sardinia, pp. 12–15 (1997) http://www.cs.usyd.edu.au/~judy/Homec/Pubs/1997_umnet.html
Liberty: Liberty Alliance Project: Digital Identity Defined (2006) http://www.projectliberty.org/
Loshin P. (2000) Big Book of Lightweight Directory Access Protocol (LDAP) RFCs. Morgan Kaufmann San Diego, CA
LTSC: Learning Technology Standards Committee (2006) http://ieeeltsc.org/
Malaka R., Zipf A.: DEEP MAP—Challenging IT research in the framework of a tourist information system. In: Fesenmaier, D., Klein, S., Buhalis, D., (eds.) Information and Communication Technologies in Tourism 2000: Proceedings of ENTER 2000. Wien, New York, Springer, pp. 15–27, (2000)
McCune W.W.: OTTER 3.0 reference manual and guide. In: Argonne National Laboratory, Mathematics and Computer Science Division. Argonne, IL (1994) http:// www-unix.mcs.anl.gov/AR/otter/
Microsoft: Microsoft Exchange Server (2006a) http://www.microsoft.com/exchange/
Microsoft: Windows Server 2003 Active Directory (2006b) http://www.microsoft.com/windows server2003/technologies/directory/activedirectory/default.mspx
Miller B.N., Konstan J.A., J. Riedl (2004) PocketLens: toward a personal recommender system. ACM Trans. Information Syst. 22(3): 437–476. DOI: 10.1145/1010614.1010618
MindCraft: DirectoryMark: the ladp server benchmarking tool (2006). http://www.mindcraft.com/ directorymark/
Mitchell T. (1997) Machine learning. McGraw-Hill, New York, NY
Nelson B.: Sizing Guide for Netscape Directory Server (2002). http://www.bnelson.com/ sizing/doc2/Directory4_0-SizingGuide.html
Nielsen J. (1993) Usability engineering. Academic Press, San Diego, CA
Nielsen J.: Zipf Curves and Website Popularity (1997) http://www.useit.com/alertbox/zipf.html
Nielsen J. (2000) Designing Web Usability. New Riders, Indianapolis, IN
Novell: Novell eDirectory (2006) http://www.novell.com/products/edirectory/
Nvision: 35 Percent of Surfing Time is Spent on 50 Sites (1999) http://www.nua.com/ surveys/index.cgi?f=VS&art_id=905355323&rel=true
O’Connor, M., Herlocker, J.: Clustering items for collaborative filtering. Proceedings of the ACM SIGIR Workshop on Recommender Systems, Berkeley, CA (1999) http://web.engr. oregonstate.edu/~herlock/papers/sigir99_workshop_clustering.pdf
OMG: Object Management Group (OMG) (2001) http://www.omg.org
Orfali R., Harkey D., Edwards J. (1994) Essential Client/Server Survival Guide. Wiley and Sons, New York
Orwant J. (1993). Doppelgänger goes to school: machine learning for user modeling. Master Thesis, MIT, Cambridge, MA
Orwant, J.: Privacy and user models: threats, caveats, and safeguards (1994) http:// citeseer.ist.psu.edu/orwant94privacy.html
Orwant J. (1995) Heterogenous learning in the Doppelgänger user modeling system. User Model. Interact. J. Personal. Res. 4(2): 107–130. DOI: 10.1007/BF01099429
Padmanabhan V., Qiu L. The content and access dynamics of a busy web site: findings and implications. ACM SIGCOMM, ACM pp. 111–123 (2000) DOI: 10.1145/347059.347413
Paiva A., Self J. (1994) TAGUS: a user and learner modeling system. In: Proceedings of the Fourth International Conference on User Modeling. Hyannis, MA, pp. 43–49
Paiva A., Self J. (1995) TAGUS—A user and learner modeling workbench. User Model. User-Adapted Interact. J. Personal. Res. 4(3): 197–226. DOI: 10.1007/BF01100244
PAPI: PAPI Learner, Draft 8 Specification (2001) http://edutool.com/papi
Passport: Microsoft Passport Network (2006) http://www.passport.net
Patrick, A.S., Black, A.: Implications of access methods and frequency of use for the National Capital Freenet (1996) http://debra.dgbt.doc.ca/services-research/survey/connections/
Pereira, F., (Ed.): C-Prolog User’s Manual Version 1.5. (1996). http://www.cs.duke.edu/~raw/ cps106/cprolog.ps.
Persistent: Persistent (2006) http://www.persistentsys.com
Pohl W. (1998) Logic-Based Representation and Reasoning for User Modeling Shell Systems. Sankt Augustin, Germany, infix
Pohl W., Schwab I., Koychev I. (1999) Learning about the user: a general approach and its application. IJCAI′99 Workshop Learning About Users. Stockholm, Sweden
Pope A. (1997) The CORBA Reference Guide: Understanding the Common Object Request Broker Architecture. Addison-Wesley, Sydney, Australia
Razmerita, L., Angehrn, A., Maedche, A.: Ontology-based user modeling for knowledge management systems. In: Brusilovsky, P., Corbett, A., De Rosis, F. (eds.): User Modeling 2003: 9th International Conference, UM 2003. Heidelberg, Germany, Springer Verlag, pp 213–217 (2003) http:// springerlink.metapress.com/link.asp?id=thw9rmvmvklx9hac
Rozanski, H., Bollman, G., Lipman, M.: Seize the occasion: usage-based segmentation for internet marketers (2001) http://www.strategy-business.com/media/pdf/03–20–01_eInsight.pdf
Schreck, J.: Security and Privacy in User Modeling. Kluwer Academic Publishers, Dordrecht, Netherlands, (2003) http://www.security-and-privacy-in-user-modeling.info
Schwab I., Pohl W. (1999) Learning Information Interest from Positive Examples. UM99 Workshop on Machine Learning for User Modeling, Banff, Canada
Shukla, S., Deshpande, A.: Tutorial: LDAP Directory Services—Just Another Database Application? 2000 ACM SIGMOD International Conference on Management of Data, New York, NY (2000) http://www.pspl.co.in/presentation/sigmod2000_directory_database_tutorial.pdf
Sparck Jones K. (1972) A Statistical Interpretation of term specificity and its application to retrieval. J. Documentation 28: 11–21. DOI: 10.1108/00220410410560573
Sun: Sun Java System Directory Server Enterprise Edition (2006) http://www.sun.com/software/ products/directory_srvr_ee/
Switchboard: Switchboard (2006) http://www.switchboard.com/
Tornago: Net Perceptions (2006) http://www.tornago.com
VanderMeer, D., Dutta, K., Datta, A.: Enabling Scalable Online Personalization on the Web. 2nd ACM Conference on Electronic Commerce, Minneapolis, MN, ACM, pp. 185–196 (2000) DOI: 10.1145/352871.352892
Vassileva J., McCalla G., Greer J. (2003) Multi-agent multi-user modeling in I-Help. User Model. Interact. J. Personal. Res. 13(1+2): 179–210. DOI: 10.1023/A:1024072706526
Vergara H. (1994) PROTUM: a prolog based tool for user modeling WIS-Report 10, WG Information Systems. Department of Information Science University of Konstanz, Germany
Wahl, M., Howes, T., Kille, S.: Lightweight Directory Access Protocol (v3). RFC 2251, Internet Engineering Task Force (1977) http://www.ietf.org/rfc/rfc2251.txt
Wang, X., Schulzrinne, H., Kandlur, D., Verma, D.: Measurement and analysis of LDAP performance. ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, ACM, pp. 156–165 (2000) http://www.cs.columbia.edu/~xinwang/public/paper/ldap_sigmetrics.pdf
WebTrends: WebTrends Customers Switch to First-Party Cookies and See Accuracy Skyrocket by More Than 300 Percent (2005). http://www.webtrends.com/AboutWebTrends/NewsRoom/ NewsRoomArchive/2005/WebTrendsCustomersSwitchtoFirst-PartyCookiesandSeeAccuracy SkyrocketbyMoreThan300Percent.aspx
Weltman, R., Tomlinson, C., and Sonntag, S.: The Java LDAP Application Program Interface (2005) http://www.ietf.org/internet-drafts/draft-ietf-ldapext-ldap-java-api-19.txt
Wettschereck, D.: A hybrid nearest-neighbor and nearest-hyperrectangle algorithm. Proceedings of the 7th European Conference on Machine Learning, Catania, Italy, Springer-Verlag, pp. 323–335 (1994)
Wettschereck D., Dietterich T.G. (1995) An experimental comparison of nearest-neighbor and nearest- hyperrectangle algorithms. Machine Learning 19(1): 5–28. DOI: 10.1007/BF00994658
Whitaker, R., Kay, J.: Location and activity modelling in intelligent environments. UM05 Workshop on Decentralized, Agent Based and Social Approaches to User Modelling, Edinburgh, Scotland (2005) http://www.l3s.de/~dolog/dasum/Whitaker_Kay_um05.pdf
WhitePages.com:WhitePages.com (2006) http://www.whitepages.com.
Wilson, D.R., Martinez, T.R.: Instance Pruning Techniques. In: Fisher, D., (ed.) Machine Learning: Proceedings of the Fourteenth International Conference (ICML′97). San Francisco, CA, Morgan Publishers, pp. 403–411 (1997) http://synapse.cs.byu.edu/papers/ wilson.icml97.prune.pdf
Wilson D.R., Martinez T.R. (2000) Reduction techniques for instance-based learning algorithms. Machine Learning 38, 257–286. DOI: 10.1023/A:1007626913721
Yaacovi, Y., Wahl, M., Genovese, T.: Lightweight Directory Access Protocol (v3): Extensions for Dynamic Directory Services. RFC 2589, Internet Engineering Task Force (1999) http://www.ietf.org/rfc/rfc2589.txt
Yimam, D., Kobsa, A.: Expert finding systems for organizations: problem and domain analysis and the demoir approach. In: Ackerman, M., Cohen, A., Pipek, V., Wulf, V., (eds.) Beyond Knowledge Management: Sharing Expertise. MIT Press, Cambridge, MA, (2003) http://www.ics.uci.edu/~kobsa/papers/2003-JOCEC-kobsa.pdf
Yodlee: Yodlee (2006). http://www.yodlee.com
Young, A.: Connection-Less Lightweight X.500 Directory Access Protocol. RFC 1798, Internet Engineering Task Force (1995) http://www.ietf.org/rfc/rfc1798.txt
Zipf G.K. (1949) Human Behavior and the Principle of Least Effort. Addison-Wesley Reading, MA
Author information
Authors and Affiliations
Corresponding author
Additional information
The UMUAI managing editor for this paper was Sandra Carberry, University of Delaware.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Kobsa, A., Fink, J. An LDAP-based User Modeling Server and its Evaluation. User Model User-Adap Inter 16, 129–169 (2006). https://doi.org/10.1007/s11257-006-9006-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11257-006-9006-5