Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering

  • Original Paper
  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

Nowadays we find more and more applications for data mining techniques in e-learning and web-based adaptive educational systems. The useful information discovered can be used directly by the teacher or author of the course in order to improve instructional/learning performance. This can, however, imply a lot of work for the teacher who can greatly benefit from the help of educational recommender systems for doing this task. In this paper we propose a system oriented to find, share and suggest the most appropriate modifications to improve the effectiveness of the course. We describe an iterative methodology to develop and carry out the maintenance of web-based courses to which we have added a specific data mining step. We apply association rule mining to discover interesting information through students’ usage data in the form of IF-THEN recommendation rules. We have also used a collaborative recommender system to share and score the recommendation rules obtained by teachers with similar profiles along with other experts in education. Finally, we have carried out experiments with several real groups of students using a web-based adaptive course. The results obtained demonstrate that the proposed architecture constitutes a good starting point to future investigations in order to generalize the results over many course contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park, CA (1996)

  • Brusilovsky, P., Kobsa A., Nejdl W., (eds.): The adaptive web: methods and strategies of web personalization. Lecture Notes on Computer Science, vol. 4321. Springer-Verlag, Heidelberg (2007)

  • Brusilovsky P.: Adaptive and intelligent web-based educational systems. Int. J. Artif. Intell. Educ. 13, 159–169 (2003)

    Google Scholar 

  • Brusilovsky, P., Schwarz, E., Weber, G.: ELM-ART: an intelligent tutoring system on World Wide Web. Third International Conference on Intelligent Tutoring Systems, pp. 261–269. Montreal, Canada (1996)

  • Burke, R.: Semantic ratings and heuristic similarity for collaborative filtering. Seventeenth National Conference on Artificial Intelligence, pp. 1–7. Austin, Texas, July 30th–August 3rd (2000a)

  • Burke R.: Knowledge-based Recomendador Systems. In: Kent, A.(eds) Encyclopedia of Library and Information Systems, vol. 69, Suppl 32., pp. 1–23. Marcel Dekker, New York (2000)

    Google Scholar 

  • Chen, W., Wasson, B.: Coordinating collaborative knowledge building. International Conference Applied Informatics, vol. 25(1), pp. 1–10. Innsbruck, Austria (2002)

  • Costaguta, R.: Una Revisión de Desarrollos Inteligentes para Aprendizaje Colaborativo Soportado por Computadora. Revista Ingeniería Informática, No. 13, available at http://www.inf.udec.cl/revista (2006)

  • Data Mining Group: Predictive Model Markup Language (PMML), available at http://www.dmg.org/pmml-v3-0.html (2006)

  • De Bra P., Calvi L.: AHA! An open Adaptive Hipermedia Architecture. New Rev. Hipermedia Multimedia 4, 115–139 (1998)

    Article  Google Scholar 

  • De Castro C., García E., Romero C., Ventura S.: Herramienta autor INDESAHC para la creación de cursos hipermedia adaptativos. Revista latinoamericana de tecnología educativa 3, 349–367 (2004)

    Google Scholar 

  • Eliassi-Rad T., Shavlik J.: A system for building intelligent agents that learn to retrieve and extract information. Int. J. User Model User-Adapted Interact. special issue User Model. Intell. Agents 13(4), 35–88 (2003)

    Google Scholar 

  • Freyberger, J., Heffernan, N., Ruiz, C.: Using association rules to guide a search for best fitting transfer models of student learning. Workshop on analyzing student–tutor interactions logs to improve educational outcomes at ITS conference, pp. 1–4. Maceio, Brazil (2004)

  • García, E., Romero, C., Ventura, S., de Castro, C.: Using rules discovery for the continuous improvement of e-learning courses. 7th International Conference on Intelligent Data Engineering and Automated Learning – IDEAL 2006, pp. 887–895. Burgos, Spain, LNCS, vol. 4224 (2006)

  • Gaudioso, E., Santos, O., Rodriguez, A., Boticario, J.: A proposal for modeling a collaborative task in a web-based collaborative learning environment. 9th International Conference on User Modeling, pp. 70–80. Johnston, PA, USA (2003)

  • Geyer-Schulz A.: An architecture for behavior-based library recomendador systems. Inf. Technol. Libraries 22, 165–174 (2003)

    Google Scholar 

  • Good I.: Probability and The Weighting of Evidence. Charles Griffin & Co. Ltd., London (1950)

    Google Scholar 

  • Hamalainen, W., Vinni, M.: Comparison of machine learning methods for intelligent tutoring systems. The 8th International Conference in Intelligent Tutoring Systems, pp. 525–534. Jhongli, Taiwan (2006)

  • Heift T., Nicholson D.: Web delivery of adaptive and interactive language tutoring. Int. J. Artif. Intell. Educ. 12, 310–324 (2001)

    Google Scholar 

  • Itmazi, J.A.S.: Sistema Flexible de gestión del e-learning para soportar el aprendizaje en las universidades tradicionales y abiertas. PhD Thesis, University of Granada, Spain (2005)

  • Klösgen, W., Zytkow, J.M.: Handbook of Data Mining and Knowledge Discovery. Oxford University Press (2002)

  • Li, J., Zaïane, O.R.: Combining usage, content, and structure data to improve web site recommendation. The 5th International Conference on E-Commerce and Web Technologies, pp. 305–315. Zaragoza, Spain, Springer, LNCS, vol. 3182 (2004)

  • Liu B., Wynne H., Shu C., Yiming M.: Analyzing the subjective interestingness of association rules. IEEE Intel. Syst. 15(5), 47–55 (2000)

    Article  Google Scholar 

  • Liu H., Hussain F., Tan C.L., Dash M.: Discretization: an enabling technique. J. Data Mining Knowledge Discov. 6(4), 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  • Lu, J.: Personalized e-learning material recommender system. International Conference on Information Technology for Application, pp. 374–379. Harbin, China (2004)

  • Markellou P., Mousourouli I., Spiros S., Tsakalidis A.: Using semantic web mining technologies for personalized e-learning experiences, pp. 461–826. Web-Based Education, Grindelwald, Switzerland (2005)

    Google Scholar 

  • Mehta, B., Nejdl, W.: Unsupervised strategies for shilling detection and robust collaborative filtering. Int. J. User Model. User-Adapted Interact. special issue Data Mining Personalization doi:10.1007/s11257-008-9050-4

  • Merceron A., Yacef K.: Mining student data captured from a web-based tutoring tool: initial exploration and results. J. Interactive Learning Res. 15(4), 319–346 (2004)

    Google Scholar 

  • Minaei-Bidgoli, B., Tan, P., Punch, W.: Mining interesting contrast rules for a web-based educational system. The Twenty-First International Conference on Machine Learning Applications, pp. 1–8. Alberta, Canada (2004)

  • Mobasher, B.: Data mining for web personalization. In: Brusilovsky P., Kobsa A., Nejdl W. (eds.), The Adaptive Web: Methods and Strategies of Web Personalization, pp. 90–135. Lecture Notes in Computer Science, vol. 4321. Springer-Verlag, Heidelberg (2006)

  • Romero, C., Ventura, S., de Bra, P., Castro, C.: Discovering prediction rules in AHA! Courses. 9th International User Modeling Conference, pp. 25–34. Johnston, PA, USA (2003)

  • Romero C., Ventura S., Bra P.: Knowledge discovery with genetic programming for providing feedback to courseware author. User Modeling and User-Adapted Interaction: J. Personalization Res. 14(5), 425–464 (2004)

    Article  Google Scholar 

  • Romero C., Ventura S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33(1), 135–146 (2006)

    Article  Google Scholar 

  • Romero C., Ventura S., Garcia E.: Data mining in course management systems: Moodle case study and tutorial. Comput. Educ. 51, 368–384 (2008)

    Article  Google Scholar 

  • Rosta, F., Brusilovsky, P.: Social navigation support in a course recommendation system. Adaptive Hypermedia and Adaptive Web-Based Systems: 4th International Conference, AH 2006, pp. 91–100. Dublin, Ireland, (2006)

  • Scheffer T.: Finding association rules that trade support optimally against confidence. Intell. Data Anal. 9(4), 381–395 (2005)

    Google Scholar 

  • Silberschatz A., Tuzhilin A.: What makes pattterns interesting in Knowledge discovery systems. IEEE Trans Knowledge Data Eng. 8(6), 970–974 (1996)

    Article  Google Scholar 

  • Srivastava J., Mobasher B., Cooley R.: Automatic personalization based on web usage mining. Commun. Assoc. Computing Machinery 43(8), 142–151 (2000)

    Google Scholar 

  • Tan, P., Kumar, V.: Interesting measures for association patterns: a perspectiva. Technical Report TR00-036, Department of Computer Science, University of Minnnesota, USA (2000)

  • Tang T., McCalla G.: Smart recommendation for an evolving E-Learning system: architecture and experiment. Int. J. E-Learning 4(1), 105–129 (2005)

    Google Scholar 

  • Wang, F.: On using data-mining technology for browsing log file analysis in asynchronous learning environment. Conference on Educational Multimedia, Hypermedia and Telecommunication, pp. 2005–2006. Denver, USA (2002)

  • Weka: Weka project available at http://www.cs.waikato.ac.nz/ml/weka/ (2008)

  • Zaiane, O.: Building a recommender agent for e-learning systems. International Conference on Computer in Education, pp. 55–59. Auckland, New Zealand (2002)

  • Zaïane, O., Luo, J.: Web usage mining for a better web-based learning environment. Conference on Advanced Technology for Education, pp. 60–64. Banff, Alberta, (2001)

  • Zan H.: A graph model for E-commerce recomendador systems. J. Am. Soc. Inf. Sci. Technol. 55(3), 259–274 (2004)

    Article  Google Scholar 

  • Zanker, M., Jessenitschnig, M.: Case-studies on explicit customer requirements in recommender systems. Int. J. User Modeling and User-Adapted Interact. special issue Data Mining Personalization doi:10.1007/s11257-008-9048-y

  • Zhang C., Zhang S.: Association Rule Mining. Springer, Berlin (2002)

    MATH  Google Scholar 

  • Zheng Z., Kohavi R., Mason L.: Real world performance of association rules. Sixth ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2(2), 86–98 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, E., Romero, C., Ventura, S. et al. An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Model User-Adap Inter 19, 99–132 (2009). https://doi.org/10.1007/s11257-008-9047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11257-008-9047-z

Keywords