Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis of Iterative Methods for Solving a Ginzburg-Landau Equation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Very recently we have proposed to use a complex Ginzburg-Landau equation for high contrast inpainting, to restore higher dimensional (volumetric) data (which has applications in frame interpolation), improving sparsely sampled data and to fill in fragmentary surfaces. In this paper we review digital inpainting algorithms and compare their performance with a Ginzburg-Landau inpainting model. For the solution of the Ginzburg-Landau equation we compare the performance of several numerical algorithms. A stability and convergence analysis is given and the consequences for applications to digital inpainting are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ambrosio, L. and Dancer, N. 2000. Calculus of Variations and Partial Differential Equations, Springer Verlag.

  • Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., and Verdera, J. 2001. Filling–in by joint interpolation of vector fields and gray levels, IEEE Transactions on Signal Processing, 10(8):1200– 1211.

    Google Scholar 

  • Bertalmio, M., Bertozzi, A., and Sapiro, G. 2001. Navier–stokes, fluid dynamics, and image and video inpainting, IEEE CVPR 2001, Hawaii, USA.

  • Bertalmio, M., Sapiro, G., Ballester, C., and Caselles, V. 2000. Image inpainting, Computer Graphics, SIGGRAPH 2000.

  • Bertalmio, M., Vese, L., Sapiro, G., and Osher, S. 2003. Simultaneous texture and structure image inpainting, IEEE Transactions on Image Processing, 12(8):882–889.

    Article  Google Scholar 

  • Bethuel, F., Brezis, H., and Hélein, F. 1994. Ginzburg–Landau vortices. In Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser.

  • Bohr, T., Huber, G., and Ott, E. 1997. The structure of spiral–domain patterns and shocks in the 2D complex Ginzburg–Landau equation, Physica D, 106:95–112.

    Google Scholar 

  • Borzi, A. 2004. Solution of lambda-omega systems: Theta-schemes and multigrid methods}. Numerische Mathematik, 54(6):1050–1072.

    Google Scholar 

  • Caselles, V., Coll, B., and Morel, J. 1996. A Kanizsa programme}, Progress in Nonlinear Differential Equations and their Applications, 25:35–55.

    Google Scholar 

  • Chan, T., Kang, S., and Shen, J. 2002. Euler’s elastica and curvature based inpainting, SIAM Journal of Applied Mathematics, 63(2):564–592.

    Article  Google Scholar 

  • Chan, T. and Shen, J. 2001. Non–texture inpainting by curvature–driven diffusions (cdd), Journal of Visual Communication and Image Representation, 12(4):436–449.

    Article  Google Scholar 

  • Chan, T. and Shen, J. 2002. Mathematical models for local nontexture inpaintings, SIAM Journal of Applied Mathematics, 62(3):1019–1043.

    Article  Google Scholar 

  • Chen, L. and Shen, J. 1998. Applications of semi–implicit Fourier–spectral methods to phase field equations}, Computer Physics Communications, 108:147–158.

    Article  Google Scholar 

  • Davis, J., Marschner, S., Garr, M., and Levoy, M. 2002. Filling holes in complex surfaces using volumetric diffusion}, First International Symposium on 3D Data Processing, Visualization, and Transmission Padua, Italy, June 19–21.

  • Efros, A.A. and Leung, T.K. 1999. Texture synthesis by non–parametric sampling}. In Proceedings of the Seventh International Conference on Computer Vision, Corfu, Greece.

  • Esedoglu, S. and Shen, J. 2002. Digital inpainting based on the Mumford–Shah–Euler image model, European Journal of Applied Mathematics, 13:353–370.

    Article  Google Scholar 

  • Grossauer, H. 2004. A Combined PDE and texture synthesis approach to inpainting Proc. ECCV′04 Tom Pajdla and Ji Matas (Eds.), Vol. 2.

  • Grossauer, H. 2004. A combined PDE and Texture Synthesis Approach to Inpainting}. European Conference on Computer Vision, LNCS 3022, T. Pajdla and J. Matas (eds.), pp. 214–224.

  • Grossauer, H. and Scherzer, O. 2003. Using the complex Ginzburg–Landau equation for digital inpainting in 2D and 3D, Scale Space Methods in Computer Vision, Lecture Notes in Computer Science 2695, Springer.

  • Igehy, H. and Pereira, L. 1997. Image replacement through texture synthesis. In Proceedings of the 1997 IEEE International Conference on Image Processing.

  • Ipsen, M. and Sorensen, P. 2000. Finite wavelength instabilities in a slow mode coupled complex Ginzburg–Landau equation, Physical Review Letters, 84(11):2389.

    Article  PubMed  Google Scholar 

  • Joyeux, L., Buisson, O., Besserer, B., and Boukir, S. 1999. Detection and removal of line scratches in motion picture films}. In Proceedings of CVPR’99, IEEE Int. Conf. on Computer Vision and Pattern Recognition, June, Fort Collins, Colorado, USA.

  • Landau, L. and Ginzburg, V. 1950. On the theory of superconductivity, Journal of Experimental and Theoretical Physics (USSR), 20, p. 1064.

  • L¨uckenfüller und Farbmischer, 24/2002. Bildkorrekturverfahren: beim Menschen gelernt, c’t–Magazin für Computer Technik, Heise Zeitschriften Verlag, Hannover, p. 190.

  • Masnou, S. 2002. Disocclusion: A variational approach using level lines, IEEE Transactions on Signal Processing, 11(2), pp. 68–76.

    Google Scholar 

  • Masnou, S. and Morel, J.-M. 1998. Level lines based disocclusion, in Proceedings of the 1998 IEEE International Conference on Image Processing, pp. 259–263.

  • Morton, K.W. and Mayers, D.F. 1994. Numerical solution of partial differential equations, Cambridge University Press.

  • Oliveira, M., Bowen, B., McKenna, R., and Chang, Y. 2001. Fast digital inpainting. In Proceedings of the International Conference on Visualization, Imaging and Image Processing (VIIP 2001), Marbella, Spain, pp. 261–266.

  • Ramasubramanian, M., Pattanaik, S., and Greenberg, D. 1999. A perceptually based physical error metric for realistic image synthesis, In Proceedings of SIGGRAPH 99. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 73– 82.

  • Thenaz, P., Blu, T., and Unser, M. 2000. Handbook of Medical Imaging, Processing and Analysis, I.N. Bankman (ed)., Academic Press: San Diego CA, USA, pp. 393–420.

  • Thomas, J. 1995. Numerical partial differential equations: Finite difference methods, Texts in Applied Mathematics, Springer, vol. 22.

  • Unser, M. 2000. Sampling–50 years after Shannon. Proceedings of the IEEE, 88(4):569–587.

    Google Scholar 

  • van Hecke, M., de Wit, E., and van Saarloos, W. 1995. Coherent and incoherent drifting pulse dynamics in a complex Ginzburg–Landau equation, Physical Review Letters, 75(21):3830.

    Article  PubMed  Google Scholar 

  • Weickert, J. 1998. Anisotropic diffusion in image processing, B.G. Teubner, Stuttgart.

  • Yamauchi, H., Haber, J., and Seidel, H.-P. 2003. Image restoration using multiresolution texture synthesis and image inpainting. In Proc. Computer Graphics International (CGI) Tokyo, Japan, 9-11 July, pp. 120–125.

Download references

Author information

Authors and Affiliations

Authors

Additional information

First online version published in June, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzi, A., Grossauer, H. & Scherzer, O. Analysis of Iterative Methods for Solving a Ginzburg-Landau Equation. Int J Comput Vision 64, 203–219 (2005). https://doi.org/10.1007/s11263-005-1844-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-005-1844-9

Keywords