Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Adaptive Method for Recovering Image from Mixed Noisy Data

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we present a new version of the famous Rudin-Osher-Fatemi (ROF) model to restore image. The key point of the model is that it could reconstruct images with blur and non-uniformly distributed noise. We develop this approach by adding several statistical control parameters to the cost functional, and these parameters could be adaptively determined by the given observed image. In this way, we could adaptively balance the performance of the fit-to-data term and the regularization term. The Numerical experiments have demonstrated the significant effectiveness and robustness of our model in restoring blurred images with mixed Gaussian noise or salt-and-pepper noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acar, R., & Vogel, C. (1994). Analysis of total variation penalty methods. Inverse Problems, 10, 1217–1229.

    Article  MATH  MathSciNet  Google Scholar 

  • Bar, L., Kiryati, N., & Sochen, N. (2006). Image deblurring in the presence of impulsive noise. International Journal of Computer Vision, 70, 279–298.

    Article  Google Scholar 

  • Bect, J., Blanc-Féraud, L., Aubert, J., & Chambolle, A. (2004). A l 1-unified variational framework for image restoration. In Proc. ECCV’2004, Prague, Czech Republic, Part IV: LNCS 3024 (pp. 1–13).

  • Bilmes, J. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Available at http://citeseer.ist.psu.edu/bilmes98gentle.html.

  • Chan, T., & Wong, C. (1998). Total variation blind deconvolution. IEEE Trans. Image Processing, 7, 370–375.

    Article  Google Scholar 

  • Chan, R., Ho, C., & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10), 1479–1485.

    Article  Google Scholar 

  • He, L., Marquina, A., & Osher, J. (2005). Blind Deconvolution Using TV Regularization and Bregman Iteration. International Journal of Imaging Systems Technology, 15, 74–83.

    Article  Google Scholar 

  • Lagendijk, R., & Biemond, J. (1988). Regularized iterative image restoration with ringing reduction. IEEE Transaction on Acoustics, Speech, and Signal Processing, 36(12), 1874–1888.

    Article  MATH  Google Scholar 

  • McLachlan, G., & Krishnan, H. (1997). The EM algorithm and extensions. New York: Wiley.

    MATH  Google Scholar 

  • Michael, K., Chan, H., & Tang, W. (1999). A fast algorithm for deblurring models with Neumann boundary conditions. SIAM Journal of Scientific Computation, 21(3), 851–866.

    Article  MATH  Google Scholar 

  • Nikolova, M. (2004). A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision, 20, 99–120.

    Article  MathSciNet  Google Scholar 

  • Redner, R., & Walker, H. (1984). Mixture densities maximum likelihood and the EM algorithm. SIAM Review, 26(2), 195–239.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin, L., & Osher, S. (1994). Total variation based image restoration with free local constraints. In Proc. IEEE ICIP (Vol. 1, pp. 31–35) Austin TX, USA.

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Journal of Physics D, 60, 259–268.

    Article  MATH  Google Scholar 

  • Shi, Y., & Chang, Q. (2006). New time dependent model for image restoration. Applied Mathematics and Computation, 179(1), 121–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Shi, Y., & Chang, Q. (2007). Acceleration methods for image restoration problem with different boundary conditions. Applied Numerical Mathematics, 58(5), 602–614.

    Article  MathSciNet  Google Scholar 

  • Vogel, R. (2002). Computational methods for inverse problems. SIAM.

  • Vogel, C., & Oman, M. (1998). Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Transactions on Image Processing, 7, 813–824.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Huan, Z., Huang, H. et al. An Adaptive Method for Recovering Image from Mixed Noisy Data. Int J Comput Vis 85, 182–191 (2009). https://doi.org/10.1007/s11263-009-0254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0254-9

Keywords