Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Variational Method for Restoring Color Images with High Density Impulse Noise

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, a new variational framework of restoring color images with impulse noise is presented. The novelty of this work is the introduction of an adaptively weighting data-fidelity term in the cost functional. The fidelity term is derived from statistical methods and contains two weighting functions as well as some statistical control parameters of noise. This method is based on the fact that impulse noise can be approximated as an additive noise with probability density function (PDF) being the finite mixture model. A Bayesian framework is then formulated in which likelihood functions are given by the mixture model. Inspired by the expectation-maximization (EM) algorithm, we present two models with variational framework in this study. The superiority of the proposed models is that: the weighting functions can effectively detect the noise in the image; with the noise information, the proposed algorithm can automatically balance the regularity of the restored image and the fidelity term by updating the weighting functions and the control parameters. These two steps ensure that one can obtain a good restoration even though the degraded color image is contaminated by impulse noise with large ration (90% or more). In addition, the numerical implementation of this algorithm is very fast by using a split algorithm. Some numerical experimental results and comparisons with other methods are provided to show the significant effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bar, L., Brook, A., Sochen, N., & Kiryati, N. (2007). Deblurring of color images corrupted by impulsive noise. IEEE Transactions on Image Processing, 16(4), 1101–1111.

    Article  MathSciNet  Google Scholar 

  • Bar, L., Sochen, N., & Kiryati, N. (2006). Image deblurring in the presence of impulsive noise. International Journal of Computer Vision, 70, 279–298.

    Article  Google Scholar 

  • Bilmes, J. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.613.

  • Blomgren, P., & Chan, T. F. (1998). Color TV: total variation methods for restoration of vector-valued images. IEEE Transactions on Image Processing, 7(3), 304–309.

    Article  Google Scholar 

  • Bresson, X., & Chan, T. F. (2008). Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2(4), 455–484.

    Article  MATH  MathSciNet  Google Scholar 

  • Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., & Osher, S. (2007). Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28, 151–167.

    Article  MathSciNet  Google Scholar 

  • Cai, J., Chan, R., & Nikolova, M. (2008). Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Problems and Imaging, 2, 187–204.

    MATH  MathSciNet  Google Scholar 

  • Cai, J., Chan, R., & Nikolova, M. (2009). Fast two-phase image deblurring under impulse noise. Journal of Mathematical Imaging and Vision, doi:10.1007/s10851-009-0169-7.

    Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20, 89–97.

    Article  MathSciNet  Google Scholar 

  • Chan, T., Golub, G., & Mulet, P. (1999). A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing, 20, 1964–1977.

    Article  MATH  MathSciNet  Google Scholar 

  • Chan, R., Ho, C., & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and edge-preserving regularization. IEEE Transactions on Image Processing, 14(10), 1479–1485.

    Article  Google Scholar 

  • Chan, T., & Shen, J. (2005). Image processing and analysis-variational, PDE, wavelet, and stochastic methods (pp. 207–243). Philadelphia: SIAM.

    MATH  Google Scholar 

  • Chen, T., & Wu, H. (2001). Space variant median filters for the restoration of impulse noise currupted images. IEEE Transactions on Circuits and Systems Part II: Analog and Digital Signal Processing, 48, 784–789.

    Article  MATH  Google Scholar 

  • Darbon, J., & Sigelle, M. (2005). A fast and exact algorithm for total variation minimization. Pattern Recognition and Image Analysis, 3522, 351–359.

    Google Scholar 

  • Douglas, J., & Rachford, H. H. (1956). On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society, 82(2), 421–439.

    MATH  MathSciNet  Google Scholar 

  • Eng, H., & Ma, K. (2001). Noise adaptive soft-switching median filter. IEEE Transactions on Image Processing, 10, 242–251.

    Article  MATH  Google Scholar 

  • Esser, E. (2009). Applications of Lagrangian-based alternating direction methods and connections to split Bregman. UCLA CAM Report 09-31.

  • Gilboa, G., & Osher, S. (2007). Nonlocal linear image regularization and supervised segmentation. Multiscale Modeling and Simulation, 6, 595–630.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications to image processing. Multiscale Modeling and Simulation, 7, 1005–1028.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldstein, T., & Osher, S. (2008). The split Bregman method for L1 regularized problems. UCLA CAM Report 08-29.

  • Huang, Y., Ng, M., & Wen, Y. (2009). Fast image restoration methods for impulse and gaussian noises removal. IEEE Signal Processing Letters, 16, 457–460.

    Article  Google Scholar 

  • Jalobeanu, A., Blanc-Feraud, L., & Zerubia, J. (2005). An adaptive Gaussian model for satellite image deblurring. IEEE Transactions on Image Processing, 14(10), 1469–1478.

    Article  Google Scholar 

  • Lagendijk, R., Tekalp, A., & Biemond, J. (1990). Maximum likelihood image and blur identification: a unifying approach. Optical Engineering, 29(5), 422–435.

    Article  Google Scholar 

  • Liu, J., Huan, Z., Huang, H., & Zhang, H. (2009). An adaptive method for recovering image from mixed noisy data. International Journal of Computer Vision, 85(2), 182–191.

    Article  Google Scholar 

  • McLachlan, G. J., & Krishnan, T. (2007). The EM algorithm and extensions. New York: John Wiley & Sons Inc.

    Google Scholar 

  • Michael, K., Chan, H., & Tang, W. (1999). A fast algorithm for deblurring models with Neumann boundary conditions. SIAM Journal on Scientific Computing, 21(3), 851–866.

    Article  MATH  MathSciNet  Google Scholar 

  • Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Nikolova, M. (2004). A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision, 20, 99–120.

    Article  MathSciNet  Google Scholar 

  • Redner, R., & Walker, H. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2), 195–239.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin, L., & Osher, S. (1994). Total variation based image restoration with free local constraints. In IEEE ICIP 1994 (Vol. 1, pp. 31–35).

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MATH  Google Scholar 

  • Setzer, S. (2009). Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. Scale Space and Variational Methods in Computer Vision, 5567, 464–476.

    Article  Google Scholar 

  • Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion deblurring from a single image. ACM Transactions on Graphics (SIGGRAPH), 27, 1–10.

    Google Scholar 

  • Tai, X., & Wu, C. (2009). Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. UCLA CAM Report 09-05.

  • Tschumperle, D. (2002). PDEs based regularization of multivalued images and applications. Ph.D. dissertation, Univ. Nice–Sophia Antipolis, Sophia Antipolis, France.

  • Vogel, C. (2002). Computational methods for inverse problems (pp. 53–54). Philadelphia: SIAM.

    MATH  Google Scholar 

  • Vogel, C., & Oman, M. (1996). Iterative methods for total variation denoising. SIAM Journal on Scientific Computing, 17(1), 227–238.

    Article  MATH  MathSciNet  Google Scholar 

  • Vogel, C., & Oman, M. (1998). Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Transactions on Image Processing, 7(6), 813–824.

    Article  MATH  MathSciNet  Google Scholar 

  • Yang, J., Zhang, Y., & Yin, W. (2009). An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM Journal on Scientific Computing, 31(4), 2842–2865.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, W., & Pope, A. (2007). Image restoration under significant additive noise. IEEE Signal Processing Letters, 14(6), 401–404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongdan Huan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Huang, H., Huan, Z. et al. Adaptive Variational Method for Restoring Color Images with High Density Impulse Noise. Int J Comput Vis 90, 131–149 (2010). https://doi.org/10.1007/s11263-010-0351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0351-9

Keywords