Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scale Invariant Feature Transform on the Sphere: Theory and Applications

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A SIFT algorithm in spherical coordinates for omnidirectional images is proposed. This algorithm can generate two types of local descriptors, Local Spherical Descriptors and Local Planar Descriptors. With the first ones, point matching between two omnidirectional images can be performed, and with the second ones, the same matching process can be done but between omnidirectional and planar images. Furthermore, a planar to spherical mapping is introduced and an algorithm for its estimation is given. This mapping allows to extract objects from an omnidirectional image given their SIFT descriptors in a planar image. Several experiments, confirming the promising and accurate performance of the system, are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Barut, A. O., & Ra̧czka, R. (1986). Theory of group representations and applications (2nd edn.). Singapore: World Scientific. ISBN 9971502178.

    MATH  Google Scholar 

  • Baumberg, A. (2000). Reliable feature matching across widely separated views. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 774–781).

    Chapter  Google Scholar 

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359. http://www.sciencedirect.com/science/article/B6WCX-4RC2S4T-2/1/cddc9c43940bd8fb62d6ed668de29e20.

    Article  Google Scholar 

  • Bogdanova, I., Bresson, X., Thiran, J. P., & Vandergheynst, P. (2007). Scale-space analysis and active contours for omnidirectional images. IEEE Transactions on Image Processing, 16(7), 1888–1901.

    Article  MathSciNet  Google Scholar 

  • Boult, T. E., Micheals, R. J., Gao, X., & Eckmann, M. (2001). Into the woods: visual surveillance of noncooperative and camouflaged targets in complex outdoor settings. Proceedings of the IEEE, 89(10), 1382–1402. doi:10.1109/5.959337.

    Article  Google Scholar 

  • Brox, T., Cremers, D., Gall, J., & Rosenhahn, B. (2010). Combined region- and motion-based 3d tracking of rigid and articulated objects. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2009.32.

    Google Scholar 

  • Bulow, T. (2004). Spherical diffusion for 3d surface smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(12), 1650–1654. doi:10.1109/TPAMI.2004.129.

    Article  Google Scholar 

  • Bur, A., Tapus, A., Ouerhani, N., Siegwart, R., & Hugli, H. (2006). Robot navigation by panoramic vision and attention guided features. In Proceedings of the 18th international conference on pattern recognition, Washington DC (pp. 695–698).

    Google Scholar 

  • Chen, C. H., Yao, Y., Page, D., Abidi, B., Koschan, A., & Abidi, M. (2008). Heterogeneous fusion of omnidirectional and PTZ cameras for multiple object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 18(8), 1052–1063. doi:10.1109/TCSVT.2008.928223.

    Article  Google Scholar 

  • Driscoll, J., & Healy, D. (1994). Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15(2), 202–250. doi:10.1006/aama.1994.1008.

    Article  MathSciNet  MATH  Google Scholar 

  • Ehlgen, T., Pajdla, T., & Ammon, D. (2008). Eliminating blind spots for assisted driving. IEEE Transactions on Intelligent Transportation Systems, 9(4), 657–665. doi:10.1109/TITS.2008.2006815.

    Article  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24, 381–395.

    Article  MathSciNet  Google Scholar 

  • Geyer, C., & Daniilidis, K. (2001). Catadioptric projective geometry. International Journal of Computer Vision, 45(3), 223–243.

    Article  MATH  Google Scholar 

  • Goedeme, T., Tuytelaars, T., Van Gool, L., Vanacker, G., & Nuttin, M. (2005). Omnidirectional sparse visual path following with occlusion-robust feature tracking. In Workshop on omnidirectional vision, camera networks and non-classical cameras—OMNIVIS.

    Google Scholar 

  • Hadj-Abdelkader, H., Malis, E., & Rives, P. (2008). Spherical image processing for accurate visual odometry with omnidirectional cameras. In Workshop on omnidirectional vision, camera networks and non-classical cameras—OMNIVIS.

    Google Scholar 

  • Hansen, P., Corke, P., Boles, W., & Daniilidis, K. (2007a). Scale invariant feature matching with wide angle images. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1668–1694). doi:10.1109/IROS.2007.4399266.

    Google Scholar 

  • Hansen, P., Corke, P., Boles, W., & Daniilidis, K. (2007b). Scale-invariant features on the sphere. In International conference on computer vision (pp. 1–8). doi:10.1109/ICCV.2007.4408893.

    Google Scholar 

  • Harris, C., & Stephens, M. J. (1988). A combined corner and edge detector. In Alvey conference (pp. 147–152). http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf.

    Google Scholar 

  • Kadir, T., & Brady, M. (2001). Saliency, scale and image description. International Journal of Computer Vision, 45(2), 83–105. doi:10.1023/A:1012460413855.

    Article  MATH  Google Scholar 

  • Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 79–116. doi:10.1023/A:1008045108935.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. doi:10.1023/B:VISI.0000029664.99615.94.

    Article  Google Scholar 

  • Matas, J., Chum, O., Urba, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In Proceedings of the British machine vision conference (pp. 384–393).

    Google Scholar 

  • Mauthner, T., Fraundorfer, F., & Bischof, H. (2006). Region matching for omnidirectional images using virtual camera planes. In Proceedings of the computer vision winter workshop 2006.

    Google Scholar 

  • Menegatti, E., Pretto, A., Scarpa, A., & Pagello, E. (2006). Omnidirectional vision scan matching for robot localization in dynamic environments. IEEE Transactions on Robotics, 22(3), 523–535.

    Article  Google Scholar 

  • Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630. doi:10.1109/TPAMI.2005.188.

    Article  Google Scholar 

  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., & van Gool, L. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1), 43–72. doi:10.1007/s11263-005-3848-x.

    Article  Google Scholar 

  • Rodrigues, O. (1840). Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de Mathématiques Pures et Appliquées, 5, 380–440.

    Google Scholar 

  • Scaramuzza, D., & Siegwart, R. (2008). Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics, 24(5), 1015–1026.

    Article  Google Scholar 

  • Sirmacek, B., & Unsalan, C. (2009). Urban-area and building detection using sift keypoints and graph theory. IEEE Transactions on Geoscience and Remote Sensing, 47(4), 1156–1167. doi:10.1109/TGRS.2008.2008440.

    Article  Google Scholar 

  • Smith, S. M., & Brady, J. M. (1997). Susan—a new approach to low level image processing. International Journal of Computer Vision, 23, 45–78.

    Article  Google Scholar 

  • Tamimi, H., Andreasson, H., Treptow, A., Duckett, T., & Zell, A. (2006). Localization of mobile robots with omnidirectional vision using particle filter and iterative sift. Robotics and Autonomous Systems, 54(9), 758–765. doi:10.1016/j.robot.2006.04.018. http://www.sciencedirect.com/science/article/B6V16-4KJ0SSH-1/2/a0cb5ac27fe99eec909f6767d486baa2. Selected papers from the 2nd European Conference on Mobile Robots (ECMR ’05).

    Article  Google Scholar 

  • Tosic, I., & Frossard, P. (2009). Spherical imaging in omnidirectional camera networks. In Multi-camera networks: concepts and applications.

    Google Scholar 

  • Tuytelaars, T., & Mikolajczyk, K. (2007). Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, 3(3), 177–280. doi:10.1561/0600000017.

    Article  Google Scholar 

  • Tygert, M. (2008). Fast algorithms for spherical harmonic expansions, II. Journal of Computational Physics, 227(8), 4260–4279. doi:10.1016/j.jcp.2007.12.019.

    Article  MathSciNet  MATH  Google Scholar 

  • Valgren, C., & Lilienthal, A. (2007). SIFT, SURF and seasons: long-term outdoor localization using local features. In Proceedings of the European conference on mobile robots (ECMR).

    Google Scholar 

  • Van Gool, L. J., Moons, T., & Ungureanu, D. (1996). Affine/photometric invariants for planar intensity patterns. In Computer vision—ECCV’96 (pp. 642–651). doi:10.1007/BFb0015574.

    Google Scholar 

  • Vedaldi, A., & Fulkerson, B. (2008) VLFeat: an open and portable library of computer vision algorithms. http://www.vlfeat.org/.

  • Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, XXIII(176), 88–93.

    Google Scholar 

  • Yuen, D., & MacDonald, B. (2005). Vision-based localization algorithm based on landmark matching, triangulation, reconstruction, and comparison. IEEE Transactions on Robotics, 21(2), 217–226. doi:10.1109/TRO.2004.835452.

    Article  Google Scholar 

  • Zabih, R., & Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In Lecture notes in computer science. Computer vision—ECCV’94 (pp. 151–158). Berlin: Springer. doi:10.1007/BFb0028329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Cruz-Mota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Mota, J., Bogdanova, I., Paquier, B. et al. Scale Invariant Feature Transform on the Sphere: Theory and Applications. Int J Comput Vis 98, 217–241 (2012). https://doi.org/10.1007/s11263-011-0505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0505-4

Keywords