Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on radial frequency, texture-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this sense, error-correcting output codes (ECOC) show to robustly combine binary classifiers to solve multi-class problems. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different sub-sets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers. Furthermore, the combination of RF and texture-based features also shows improvements over the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. The codeword is a sequence of bits of a code representing each class, where each bit identifies the membership of the class for a given binary classifier.

  2. The parameters of the base classifiers are explained in the experimental results section.

  3. Due to the high similitude among slope-based and RF features results, the combination of texture-based and slope-based features has been omitted.

References

  1. World Health Organization (2006). World Health Organization Statistics. http://www.who.int/entity/healthinfo/statistics/.

  2. Burke, A. P., Farb, A., Malcom, G. T., Smialek, J., & Virmani, R. (1997). Coronary risk factors and plaque morphology inmen with coronary disease who died suddently. The New England Journal of Medicine, 336(18), 1276–1281.

    Article  Google Scholar 

  3. Dietterich, T., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263–282.

    MATH  Google Scholar 

  4. Windeatt, T., & Ardeshir, G. (2003). Boosted ECOC ensembles for face recognition. International Conference on Visual Information Engineering, 165–168.

  5. Kittler, J., Ghaderi, R., Windeatt, T., & Matas, J. (2001). Face verification using error correcting output codes. CVPR, 1, 755–760.

    Google Scholar 

  6. Ghani, R. (2001). Combining labeled and unlabeled data for text classification with a large number of categories. International Conference on Data Mining, 597–598.

  7. Zhou, J., & Suen, C., (2005). Unconstrained numeral pair recognition using enhanced error correcting output coding: A holistic approach. Proceedings in Conference on Document Analysis and Records, 1, 484–488.

    Google Scholar 

  8. Allwein, E., Schapire, R., & Singer, Y. (2002). Reducing multiclass to binary: A unifying approach for margin classifiers. JMLR, 1, 113–141.

    Article  MathSciNet  Google Scholar 

  9. Windeatt, T., & Ghaderi, R. (2003). Coding and decoding for multiclass learning problems. Information Fusion, 1, 11–21.

    Article  Google Scholar 

  10. Pujol, O., Radeva, P., & Vitrià, J. (2006). Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. PAMI, 28, 1001–1007.

    Google Scholar 

  11. Pudil, P., Ferri, F., Novovicova, J., & Kittler, J. (1994). Floating search methods for feature selection with nonmonotonic criterion functions. ICPR, 279–283.

  12. Escalera, S., Pujol, O., & Radeva, P. (2008). Loss-weighted decoding for error-correcting output coding. International Conference on Computer Vision Theory and Applications, 2, 117–122.

    Google Scholar 

  13. Karla, C., Joel, B., Oriol, P., Salvatella, N., & Radeva, P. (2006). In-vivo IVUS tissue classification: A comparison between RF signal analysis and reconstructed images. Progress in Pattern Recognition (pp. 137–146). Berlin: Springer

    Google Scholar 

  14. Hastie, T., & Tibshirani, R. (1998). Classification by pairwise grouping. NIPS, 26, 451–471.

    MATH  MathSciNet  Google Scholar 

  15. Nilsson, N. J. ( 1965). Learning machines, McGraw-Hill.

  16. Allwein, E., Schapire, R., & Singer, Y. (2002). Reducing multiclass to binary: A unifying approach for margin classifiers. JMLR, 1, 113–141.

    Article  MathSciNet  Google Scholar 

  17. Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting. The annals of statistics, 38, 337–374.

    MathSciNet  Google Scholar 

  18. Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

    MathSciNet  Google Scholar 

  19. Pujol, O., Rosales, M., & Radeva, P. (2003). Intravascular ultrasound images vessel characterization using adaBoost. Functional Imaging and Modelling of the Heart: Lecture Notes in Computer Science, 242–251.

  20. Zhang, X., McKay, C. R., & Sonka, M. (1998). Tissue characterization in intravascular ultrasound images. IEEE Transactions on Medicine, 17(A), 889–898.

    Article  Google Scholar 

  21. de Korte, C. L., PasterKamp, G., van der Steen, A. F. W., & Woutman, H. A. (1999). Characterisation of plaque components with IVUS elastography. IEEE Ultrasonics Symposium Proceedings, 1645-1648.

  22. Nair, A., Kuban, B. D., Obuchowski, N., & Vince, G. (2001). Assesing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound in Medicine & Biology, 27, 1319–1331.

    Article  Google Scholar 

  23. Kawasaki, M. (2002). In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation, 105, 2487–2492.

    Article  Google Scholar 

  24. Murashige, A., Hiro , T., Fujii, T., Imoto, K., Murata, T., Fukumoto, Y., et al. (2005). Detection of lipid-laden athero sclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals. Journal of the American College of Cardiology, 45(12), 1954–1960.

    Article  Google Scholar 

  25. Proakis, J., Rader, C., Ling, F., & Nikias, C. (1992). Advanced digital signal processing. Mc Millan.

  26. Ohanian, P., Dubes, R. (1992). Performance evaluation for four classes of textural features. Pattern Recognition, 25, 819–833.

    Article  Google Scholar 

  27. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971–987.

    Article  Google Scholar 

  28. Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America, 2(A),1160–1169.

    Google Scholar 

  29. Bovik, A. C., Clark, M., & Geisler, W. S. (1990). Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1), 55–73.

    Article  Google Scholar 

  30. Gil, D., Hernandez, A., Rodríguez, O., Mauri, F., & Radeva, P. (2006). Statistical strategy for anisotropic adventitia modelling in IVUS. IEEE Transaction Medical Imaging, 27, 1022–1030.

    Google Scholar 

  31. Randen, T., & Husoy, J. H. (1999). Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, 291–310.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by TIN2006-15308-C02 and FIS ref. PI061290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Escalera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escalera, S., Pujol, O., Mauri, J. et al. Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes. J Sign Process Syst Sign Image Video Technol 55, 35–47 (2009). https://doi.org/10.1007/s11265-008-0180-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0180-z

Keywords