Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Signal Assignment Model for the Memory Management of Multidimensional Signal Processing Applications

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Many signal processing systems, particularly in the multimedia and telecom domains, are synthesized to execute data-dominated applications. Their behavior is described in a high-level programming language, where the code is typically organized in sequences of loop nests and the main data structures are multidimensional arrays. Since data transfer and storage have a significant impact on both the system performance and the major cost parameters—power consumption and chip area, the designer must spend a significant effort during the system development process on the exploration of the memory subsystem in order to achieve a cost-optimized design. This paper presents a memory allocation methodology for multidimensional signal processing applications, focusing on the problem of efficiently mapping the multidimensional signals from the algorithmic specification into the physical memory. In a first phase, two previous mapping models are implemented within a common theoretical framework, which is advantageous from both the point of view of computational efficiency and the amount of allocated data storage. Different from all the previous mapping models that aim to optimize the memory sharing between the elements of a same array (creating separate windows in the physical memory for distinct arrays), this proposed mapping model exploit—in a second phase—the possibility of memory sharing between the elements of different arrays. As a consequence, this signal assignment approach yields significant savings in the amount of data storage resulted after mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. Let \({\bf x}=[x_1,\ldots ,x_m]^T\) and \({\bf y}=[y_1,\ldots ,y_m]^T\) be two m-dimensional vectors. The vector y is larger lexicographically than x (written y ≻ x) if (y 1 > x 1), or (y 1 = x 1 and y 2 > x 2), ... , or (y 1 = x 1, ..., y m − 1 = x m − 1, and y m  > x m ).

References

  1. Luican, I. I., Zhu, H., & Balasa, F. (2008). Efficient assignment algorithm for mapping multidimensional signals into the physical memory. In Proc. IEEE int. conf. acoustics, speech, and signal processing (pp. 1409–1412). Las Vegas NV.

  2. Panda, P. R., Catthoor, F., Dutt, N., Dankaert, K., Brockmeyer, E., Kulkarni, C., et al. (2001) Data and memory optimization techniques for embedded systems. ACM Transactions on Design Automation of Electronic Systems, 6(2), 149–206.

    Article  Google Scholar 

  3. Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P. G., Van Achteren, T., et al. (2002). Data access and storage management for embedded programmable processors. Boston: Kluwer.

    MATH  Google Scholar 

  4. De Greef, E., Catthoor, F., & De Man, H. (1997). Memory size reduction through storage order optimization for embedded parallel multimedia applications. In A. Krikelis (Ed.), Parallel computing (Special issue on “Parallel Processing and Multimedia”) (Vol. 23, no. 12, pp. 1811–1837). Amsterdam: Elsevier.

    Google Scholar 

  5. Tronçon, R., Bruynooghe, M., Janssens, G., & Catthoor, F. (2002). Storage size reduction by in-place mapping of arrays. In A. Coresi (Ed.), Verification, model checking and abstract interpretation (pp. 167–181).

  6. Lefebvre, V., & Feautrier, P. (1998). Automatic storage management for parallel programs. Parallel Computing, 24, 649–671.

    Article  MATH  Google Scholar 

  7. Quilleré, F., & Rajopadhye, S. (2000). Optimizing memory usage in the polyhedral model. ACM Transactions on Programming Languages and Systems, 22(5), 773–815.

    Article  Google Scholar 

  8. Schrijver, A. (1986). Theory of linear and integer programming. New York: Wiley.

    MATH  Google Scholar 

  9. Darte, A., Schreiber, R., & Villard, G. (2005). Lattice-based memory allocation. IEEE Transactions on Computers, 54, 1242–1257.

    Article  Google Scholar 

  10. Verbauwhede, I., Catthoor, F., Vandewalle, J., & De Man, H. (1991). In-place memory management of algebraic algorithms on application specific processors. In E. Deprettere, et al. (Eds.), Algorithms and parallel VLSI architectures. Amsterdam: Elsevier.

    Google Scholar 

  11. Kjeldsberg, P. G., Catthoor, F., & Aas, E. J. (2003). Data dependency size estimation for use in memory optimization. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 22(7), 908–921.

    Article  Google Scholar 

  12. Balasa, F., Zhu, H., & Luican, I. I. (2007). Computation of storage requirements for multi-dimensional signal processing applications. IEEE Transactions on VLSI Systems, 15(4), 447–460.

    Article  Google Scholar 

  13. Thiele, L. (1992). Compiler techniques for massive parallel architectures. In P. Dewilde (Ed.), State-of-the-art in computer science. Boston: Kluwer.

    Google Scholar 

  14. Verdoolaege, S., Beyls, K., Bruynooghe, M., & Catthoor, F. (2005). Experiences with enumeration of integer projections of parametric polytopes. In R. Bodik (Ed.), Compiler construction: 14th int. conf. (Vol. 3443, pp. 91–105). New York: Springer.

    Google Scholar 

  15. Luican, I. I., Zhu, H., & Balasa, F. (2007). Signal-to-memory mapping analysis for multimedia signal processing. In Proc. asia & south-pacific design automation conf. (pp. 486–491). Yokohama, Japan.

  16. Berge, C. (1957). Two theorems in graph theory. Proceedings of the National Academy of Sciences of the United States of America, 43, 842–844.

    Article  MATH  MathSciNet  Google Scholar 

  17. Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17, 449–467.

    Article  MATH  MathSciNet  Google Scholar 

  18. Gabow, H. N. (1973). Implementation of algorithms for maximum matching on non-bipartite graphs. Ph.D. Thesis, Stanford University.

  19. Gabow, H. N., & Tarjan, R. E. (1991). Faster scaling algorithms for general graph-matching problems. Journal of the ACM, 38(4), 815–853.

    Article  MATH  MathSciNet  Google Scholar 

  20. Applegate, D., & Cook, W. (1993) Solving large-scale matching problems. In D. Johnson & C. C. McGeoch (Eds.), Network flows and matchings. DIMACS series in discrete mathematics and theoretical computer science (Vol. 12, pp. 557–576). Providence: American Mathematical Society.

    Google Scholar 

  21. Rothberg, E. (2009). FTP Directory. ftp://dimacs.rutgers.edu/pub/netflow/.

  22. Talavera, G., Jayapala, M., Carrabina, J., & Catthoor, F. (2008) Address generation optimization for embedded high-performance processors: A survey. Journal of Signal Processing Systems, 53(3), 271–284.

    Article  Google Scholar 

  23. Moonen, M., Dooren, P. V., & Vandewalle, J. (1992). An SVD updating algorithm for subspace tracking. SIAM Journal on Matrix Analysis and Applications, 13(4), 1015–1038.

    Article  MATH  MathSciNet  Google Scholar 

  24. Tom’s Hardware (2009). Benchmark marathon: 65 CPUs from 100 MHz to 3066 MHz. http://www.tomshardware.com/2003/02/17/benchmark_marathon/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Balasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasa, F., Luican, I.I., Zhu, H. et al. Signal Assignment Model for the Memory Management of Multidimensional Signal Processing Applications. J Sign Process Syst 63, 51–65 (2011). https://doi.org/10.1007/s11265-009-0386-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0386-8

Keywords