Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

High-Speed, SAD Based Wavefront Sensor Architecture Implementation on FPGA

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Wavefront aberrations caused by turbulent or rapidly changing media can considerably degrade the performance of an imaging system. To dynamically compensate these wavefront distortions adaptive optics is applied. We developed an affordable adaptive optic system which combines CMOS sensor and Liquid Crystal on Silicon (LCOS) display technology with the Field Programmable Gate Arrays (FPGA) devices parallel computing capabilities. A high-speed, accurate wavefront sensor is an elemental part of an adaptive optic system. In the paper, an efficient FPGA implementation of the Sum of Absolute Differences (SAD) algorithm, which accomplishes the correlation-based wavefront sensing, is introduced. This architecture was implemented on a Spartan-3 FPGA which is capable of real-time (>500 fps) measuring the incoming wavefront.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Fig. 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dayton, D., Gonglewski, J., Restaino, S., Martin, J., Philips, J., Hartman, M., et al. (2002). Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites. Optics Express, 10, 1508–1519.

    Google Scholar 

  2. Richards, K., Rimmele, T., Hill, R., & Chen, J. (2004). High speed low latency solar adaptive optics camera. Proceedings of SPIE, 5171, 316–325.

    Article  Google Scholar 

  3. Cao, Z., Lifa, Hu, Li, D., & Xuan, L. (2006). Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Optics Express, 14, 8013–8018.

    Article  Google Scholar 

  4. de Lima Monteiro, D. W., Vdovin, G., & Sarro, P. M. (2004). High-speed wavefront sensor compatible with standard CMOS technology. Sensors and Actuators A: Physical, 109(3), 220–230.

    Article  Google Scholar 

  5. Poyneer, L. A., Palmer, D. W., LaFortune, K. N., & Bauman, B. (2005). “Experimental results for correlation-based wavefront sensing”, Advanced Wavefront Control: Methods, Devices, and Applications III. Proceedings of SPIE, 5894, 207–220.

    Article  Google Scholar 

  6. Chang-Hui, Rao, Wen-Han, Jiang, Cheng, Fang, Ning, Ling, Wei-Chao, Zhou, Ming-De, Ding, et al. (2003). A tilt-correction adaptive optical system for the solar telescope of Nanjing University. Chinese Journal of Astronomy and Astrophysics, 3(6), 576–586.

    Article  Google Scholar 

  7. Serati, S., Xiaowei, X., Mughal, O., & Linnenberger, A. (2003). High-resolution phase-only spatial light modulators with sub-millisecond response. Proceedings of SPIE, 5106, 138–145.

    Article  Google Scholar 

  8. Rodríguez-Ramos, L. F., Marichal-Hernández, J. G., & Rosa, F. (2006). “Modal Fourier wavefront reconstruction on graphics processing units,” Advances in adaptive optics II. Proceedings of SPIE, 6272, 627215.

    Article  Google Scholar 

  9. Marichal-Hernandez, G., Rodriguez-Ramos, J. M., & Fernando Rosa, J. (2007). Modal Fourier wavefront reconstruction using graphics processing units. Journal of Electronic Imaging, 16(2), 023005.

    Article  Google Scholar 

  10. Rosa, F. L., Marichal-Hernandez, J. G., & Rodriguez-Ramos, J. M. (2004). “Wavefront phase recovery using graphic processing units (GPUs),” Optics in atmospheric propagation and adaptive systems VII. Proceedings of SPIE, 5572, 262–272.

    Article  Google Scholar 

  11. Saunter, C. D., Love, G. D., Johns, M., Holmes, J. (2005). “FPGA technology for high speed, low cost adaptive optics” Proc. SPIE 5th International Workshop on Adaptive Optics in Industry and Medicine.

  12. Rodríguez-Ramos, L. F., Viera, T., Herrera, G., Gigante, J. V., Gago, F., & Alonso, Á. (2006). “Testing FPGAs for real-time control of adaptive optics in giant telescopes,” Advances in adaptive optics II. Proceedings of SPIE, 6272, 62723X.

    Article  Google Scholar 

  13. Rodríguez-Ramos, L. F., Viera, T., Gigante, J. V., Gago, F., Herrera, G., Alonso, Á., et al. (2005). “FPGA adaptive optics system test bench,” Astronomical adaptive optics systems and applications II. Proceedings of SPIE, 5903, 120–128.

    Article  Google Scholar 

  14. Saunter, C. D., & Love, G. D. (2007). “Low cost, high speed control for adaptive optics,” Proc. SPIE 6th International Workshop on Adaptive Optics for Industry and Medicine.

  15. Wong, S., Vassiliadis, S., & Cotofana, S. (2002). A sum of absolute differences implementation in FPGA hardware. Euromicro Conference Proc, 28, 183–188.

    Article  Google Scholar 

  16. http://www.microdisplay.com

  17. Porter, J., Queener, H., Lin, J., Thorn, K., Awwal, A. A. S. (2006). Adaptive optics for vision science: Principles, practices, design and applications. Wiley.

  18. http://holoeye.com/download_area.html

  19. http://www.xilinx.com/

  20. Trujillo, J. S., Valido, M. R., Rodríguez Ramos, L. F., Boemo, E., Rosa, F., Rodríguez Ramos, J. M. (2008) “Real-time phase slopes calculations by correlations using FPGAs”. Proceedings of SPIE, 7015.

  21. Sridharan, R., Raja Bayanna, A., & Venkatakrishnan, P. (2005). Simulations of solar AO systems. Springer Berlin, Science with Adaptive Optics.

  22. Ambrosch, K., Humenberger, M., Kubinger, W., Steininger, A. (2008). SAD-based stereo matching using FPGAs. Springer, Embedded Computer Vision.

  23. Li, B. M., & Leong, P. H. (2008). Serial and parallel FPGA-based variable block size motion estimation processors. Journal of Signal Processing Systems, 51, 77–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Kincses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kincses, Z., Orzó, L., Nagy, Z. et al. High-Speed, SAD Based Wavefront Sensor Architecture Implementation on FPGA. J Sign Process Syst 64, 279–290 (2011). https://doi.org/10.1007/s11265-010-0487-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0487-4

Keywords