Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

FPGA-based Personal Authentication Using Fingerprints

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The current technological age demands the deployment of biometric security systems not only in those stringent and highly reliable fields (forensic, government, banking, etc.) but also in a wide range of daily use consumer applications (internet access, border control, health monitoring, mobile phones, laptops, etc.) accessible worldwide to any user. In order to succeed in the exploitation of biometric applications over the world, it is needed to make research on power-efficient and cost-effective computational platforms able to deal with those demanding image and signal operations carried out in the biometric processing. The present work deals with the evaluation of alternative system architectures to those existing PC (personal computers), HPC (high-performance computing) or GPU-based (graphics processing unit) platforms in one specific scenario: the physical implementation of an AFAS (automatic fingerprint-based authentication system) application. The development of automated fingerprint-based personal recognition systems in the way of compute-intensive and real-time embedded systems under SoPC (system-on-programmable-chip) devices featuring one general-purpose MPU (microprocessor unit) and one run-time reconfigurable FPGA (field programmable gate array) proves to be an efficient and cost-effective solution. The provided flexibility, not only in terms of software but also in terms of hardware thanks to the programmability and run-time reconfigurability performance exhibited by the suggested FPGA device, permits to build any application by means of hardware-software co-design techniques. The parallelism and acceleration performances inherent to the hardware design and the ability of reusing hardware resources along the application execution time are key factors to improve the performance of existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. The Biometric Consortium, http://www.biometrics.org.

  2. Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of fingerprint recognition (2nd ed.). London: Springer.

    Book  Google Scholar 

  3. FVC2004 & FVC2006 web sites: http://bias.csr.univbo.it/fvc2004, http://bias.csr.unibo.it/fvc2006.

  4. Neurotechnology Verifinger SDK, http://www.neurotechnology.com.

  5. DigitalPersona One Touch SDK, http://www.digitalpersona.com.

  6. Precise Biometrics BioMatch SDK, http://www.precisebiometrics.com.

  7. Suprema BioMini SDK, http://www.supremainc.com.

  8. 3M Cogent BioTrust SDK, http://www.cogentsystems.com.

  9. Biometrika FxIntegrator Fingerprint Recognition Module, http://www.biometrika.it.

  10. SecuGen SDA Stand-Alone Fingerprint Recognition Modules, http://www.secugen.com.

  11. Suprema SFM Series Fingerprint Modules, http://www.supremainc.com.

  12. Privaris plusID Universal Biometric Devices, http://www.privaris.com.

  13. 3M Cogent SecurASIC Chip, http://www.cogentsystems.com.

  14. TMS320 Texas Instruments DSP Platforms, http://www.ti.com.

  15. AuthenTec TCD50D Digital ID Hardware Engine, http://www.upek.com.

  16. L-1 Identity Solutions MV1210 & MV1250 Bioscrypt Fingerprint Modules, http://www.l1id.com.

  17. Oki ML67Q5250 Fingerprint Authentication MCU, http://www.okisemi.com.

  18. Fingerprint Cards FPC2020 ASIC Fingerprint Processor and FPC-AM3 Biometric Module, http://www.fingerprints.com.

  19. Galbally, J., Fierrez, J., Alonso-Fernandez, F., & Martinez-Diaz, M. (2010). Evaluation of direct attacks to fingerprint verification systems. Journal of Telecommunication Systems (Springer-Verlag), Special Issue on Biometrics Systems and Applications, 47(3–4), 243–254.

    Google Scholar 

  20. Baldisserra, D., Franco, A., Maio, D., & Maltoni, D. (2005). Fake fingerprint detection by odor analysis. International Conference on Biometric Authentication, 3832, 265–272.

    Google Scholar 

  21. Poh, N., Bourlai, T., Kittler, J., Allano, L., Alonso-Fernandez, F., Ambekar, O., et al. (2009). Benchmarking quality-dependent and cost-sensitive score-level multimodal biometric fusion algorithms. IEEE Transactions on Information Forensics and Security, 4(4), 849–866.

    Article  Google Scholar 

  22. Nagar, A., Nandakumar, K., & Jain, A. K. (2010). A hybrid biometric cryptosystem for securing fingerprint minutiae templates. Pattern Recognition Letters, 31, 733–741.

    Article  Google Scholar 

  23. Altera Corporation, http://www.altera.com.

  24. Atmel Corporation, http://www.atmel.com.

  25. Tico, M., & Kuosmanen, P. (2003). Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 1009–1014.

    Article  Google Scholar 

  26. Ross, A., Jain, A., & Reisman, J. (2003). A hybrid fingerprint matcher. Pattern Recognition, 36(7), 1661–1673.

    Article  Google Scholar 

  27. Jain, A. K., Feng, J., & Nandakumar, K. (2010). Fingerprint matching. IEEE Computer, 2010, 36–44.

    Article  Google Scholar 

  28. Su, Q., Tian, J., Chen, X., & Yang, X. (2005). A fingerprint authentication system based on mobile phone. Audio- and Video-Based Biometric Person Authentication (AVBPA), 3546, 151–159.

    Article  Google Scholar 

  29. Pan, S. B., Moon, D., Gil, Y., Ahn, D., & Chung, Y. (2003). An ultra-low memory fingerprint matching algorithm and its implementation on a 32-bit smart card. IEEE Transactions on Consumer Electronics, 49(2), 453–459.

    Article  Google Scholar 

  30. Mostafa Abd Allah, M. (2005). A fast and memory efficient approach for fingerprint authentication system. IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 259–263.

  31. Yang, S., Schaumont, P., & Verbauwhede, I. (2005). Microcoded coprocessor for embedded secure biometric authentication systems. IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2005, pp. 130–135.

  32. Gupta, P., Ravi, S., Raghunathan, A., & Jha, N. K. (2005). Efficient fingerprint-based user authentication for embedded systems. Design Automation Conference (DAC), 2005, 244–247.

    Google Scholar 

  33. Lindoso, A., Entrena, L., López-Ongil, C., & Liu, J. (2005). Correlation-based fingerprint matching using FPGAs. IEEE International Conference on Field-Programmable Technology (FPT), 2005, 87–94.

    Article  Google Scholar 

  34. Schaumont, P., Hwang, D., & Verbauwhede, I. (2005). Platform-based design for an embedded fingerprint authentication device. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 24(12), 1929–1936.

    Article  Google Scholar 

  35. Lindoso, A., & Entrena, L. (2007). High performance FPGA-based image correlation. Journal of Real-time Image Processing, 2(4), 223–233.

    Article  Google Scholar 

  36. Jiang, R. M., & Crookes, D. (2008). FPGA-based minutia matching for biometric fingerprint image database retrieval. Journal of Real-Time Image Processing, 3(3), 177–182.

    Article  Google Scholar 

  37. Danese, G., Giachero, M., Leporati, F., Matrone, G., & Nazzicari, N. (2009). An FPGA-based embedded system for fingerprint matching using phase-only correlation algorithm. IEEE Euromicro Conference on Digital System Design: Architectures, Methods and Tools, 2009, 672–679.

    Article  Google Scholar 

  38. Razak, A. H. A., & Taharim, R. H. (2009). Implementing Gabor filter for fingerprint recognition using Verilog HDL. Internacional Colloquium on Signal Processing & Its Applications (CSPA), 2009, 423–427.

    Article  Google Scholar 

  39. Liu, J., Wang, S., Li, Y., Han, J., & Zeng, X. (2010). Configurable pipelined Gabor filter implementation for fingerprint image enhancement. IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010, 584–586.

    Article  Google Scholar 

  40. Hermanto, L., Sudiro, S. A., & Wibowo, E. P. (2010). Hardware implementation of fingerprint image thinning algorithm in FPGA device. International Conference on Networking and Information Technology (ICNIT), 2010, 187–191.

    Article  Google Scholar 

  41. Becker, J., Hübner, M., Hettich, G., Constapel, R., Eisenmann, J., & Luka, J. (2007). Dynamic and partial FPGA exploitation. Proceedings of the IEEE, 95(2), 438–452.

    Article  Google Scholar 

  42. Delahaye, J. P., Gogniat, G., Roland, C., & Bomel, P. (2004). Software radio and dynamic reconfiguration on a DSP/FPGA platform. Frequenz, Journal of Telecommunications, 58, 152–159.

    Google Scholar 

  43. Fons, M., Fons, F., & Cantó, E. (2010). Fingerprint image processing acceleration through run-time reconfigurable hardware. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(12), 991–995.

    Article  Google Scholar 

  44. Mainguet, J. F., Gong, W., & Wang, A. (2004). Reducing silicon fingerprint sensor area. International Conference on Biometric Authentication (ICBA), 3072, 301–308.

    Google Scholar 

  45. Hong, L., Wan, Y., & Jain, A. (2004). Fingerprint image enhancement: algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 777–789.

    Article  Google Scholar 

  46. Cheng, J., & Tian, J. (2004). Fingerprint enhancement with dyadic scale-space. Pattern Recognition Letters, 25(11), 1273–1284.

    Article  Google Scholar 

  47. Ravishankar Rao, A., & Schunck, B. G. (1989). Computing oriented texture fields. IEEE International Conference on Computer Vision and Pattern Recognition, pp. 61–68.

  48. Ratha, N. K., Chen, S., & Jain, A. K. (1995). Adaptive flow orientation-based feature extraction in fingerprint images. Pattern Recognition, 28(11), 1657–1672.

    Article  Google Scholar 

  49. Lam, L., Lee, S.-W., & Suen, C. Y. (1992). Thinning methodologies. A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 869–885.

    Article  Google Scholar 

  50. Gao, Z., & Hall, W. R. (1989). Parallel thinning with two-subiteration algorithm. Communications of the ACM, 32(3), 359–373.

    Article  Google Scholar 

  51. Jiang, X., & Yau, W.-Y. (2000). Fingerprint minutiae matching based on the local and global structures. International Conference on Pattern Recognition, 2, 1038–1041.

    Google Scholar 

  52. Barrenechea, M., Altuna, J., Mendicute, M., & Del Ser, J. (2009). A low-cost FPGA-based embedded fingerprint verification and matching system. Intelligent Technical Systems, 38(5), 247–260.

    Article  Google Scholar 

  53. Yang, S., Sakiyama, K., & Verbauwhede, I. (2006). Efficient and secure fingerprint verification for embedded devices. EURASIP Journal on Applied Signal Processing, 2006(3), 1–11.

    MATH  Google Scholar 

  54. Vitabile, S., Conti, V., Militello, C., & Sorbello, F. (2007). A self-contained biometric sensor for ubiquitous authentication. International Conference on Intelligent Pervasive Computing (IPC), 2007, 289–294.

    Article  Google Scholar 

  55. Danese, G., Giachero, M., Leporati, F., & Nazzicari, N. (2010). A multicore embedded processor for fingerprint recognition. IEEE Euromicro Conference on Digital System Design: Architectures, Methods and Tools, 2010, 779–784.

    Article  Google Scholar 

  56. Lindoso, A., Entrena, L., & Izquierdo, J. (2007). FPGA-based acceleration of fingerprint minutiae matching. IEEE Southern Conference on Programmable Logic (SPL), 2007, 81–86.

    Article  Google Scholar 

  57. Bum Pan, S., Moon, D., Kim, K., & Chung, Y. (2008). A fingerprint matching hardware for smart cards. The Institute of Electronics, Information and Communication Engineers (IEICE) Electronics Express, 5(4), 136–144.

    Google Scholar 

  58. Xilinx, Inc., http://www.xilinx.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Fons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fons, M., Fons, F., Cantó, E. et al. FPGA-based Personal Authentication Using Fingerprints. J Sign Process Syst 66, 153–189 (2012). https://doi.org/10.1007/s11265-011-0629-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0629-3

Keywords