Abstract
The extraction of rotation invariant representation is important for many signal processing tasks such as image analysis, computer vision, pattern recognition and so forth. In this paper, we show that, under certain conditions, the Two-Dimensional Fractional Fourier Transform (2D-FRFT) possesses this attractive property through mathematical analysis and extensive computer simulations. Based on this property, we propose a novel digital image watermarking method which combines 2D chirp signal with the addition and rotation invariant properties of 2D-FRFT in order to improve robustness and security of digital image watermark in 2D-FRFT domain. Experimental results show that the proposed method is robust against numerous watermarking attacks including rotation geometrical transform, JPEG compression, crop, median filtering, histogram equalization, salt & pepper noise, Gaussian lowpass filter, shift, dithering and Gaussian noise, and secures against unauthorized information copying and redistribution.
Similar content being viewed by others
References
Hu, M. K. (1962). Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory, 8(2), 179–187.
Kashyap, R. L., & Khotanzad, A. (1986). A model-based method for rotation invariant texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(4), 472–481.
Cohen, F. S., Zhang, Z., & Patel, M. A. (1991). Classification of rotated and scaled textured images using Gaussian Markov Random Fields models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2), 192–202.
Tan, T. (1995). Geometric transform invariant texture analysis. Proceedings of SPIE, 2488, 475–485.
Zhang, J., & Tan, T. (2002). Brief review of invariant texture analysis methods. Pattern Recognition, 35(3), 735–747.
Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62(2), 61–81.
Ozatakas, H. M., Barshan, B., Mendlovic, D., & Onural, L. (1996). Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 44(9), 2141–2150.
Tao, R., Lin, Q., & Wang, Y. (2004). The theory and applications of Fractional Fourier Transform. Beijing: Tsinghua University Press.
Tao, R., Deng, B., & Wang, Y. (2006). Research progress of the fractional science in China. Information Science F Series, 99(1), 1–25.
Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics. Journal of the Institute of Mathematics and its Applications, 25(3), 241–265.
Almeida, L. B. (1994). The fractional Fourier Transform and time frequency representation. IEEE Transactions on Signal Processing, 42(11), 3084–3091.
Barnsley, M. F. (1988). Fractal everywhere. Boston: Academic.
Shao, M., & Nikias, C. L. (1993). Signal processing with fractional lower order moment: stable processes and their applications. Proceedings of the IEEE, 81(7), 986–1010.
Pei, S. C., Tseng, C. C., Yeh, M. H., & Shyu, J. J. (1998). Discrete fractional Hartley and Fourier transforms. IEEE Transactions on Circuits and Systems II, 45(6), 665–675.
Candan, C., Alper Kutay, M., & Ozaktas, H. M. (2000). The discrete Fractional Fourier Transform. IEEE Transactions on Signal Processing, 48(5), 1329–1337.
Ozatakas, H. M., & Mendlovic, D. (1993). Fourier transforms of fractional order and their optical interpretation. Optics Communications, 101, 163–169.
Lohmann, A. W. (1993). Image rotation, Wigner rotation, and the fractional Fourier transform. Journal of the Optical Society of America A, 10(10), 2181–2186.
Pei, S. C., & Yeh, M. H. (1998). Two dimensional discrete fractional Fourier transform. Signal Processing, 67, 99–108.
Sarikaya, R., Gao, Y., & Saon, G. (2004). Fractional Fourier Transform features for speech recognition. IEEE International Conference on Acoustics Speech, and Signal Processing (pp. 529–532).
Gao, L., Qi, L., Chen, E., Mu, X., & Guan, L. (2010). Recognizing Human emotional state based on the phase information of the two dimensional Fractional Fourier Transform. Advances in Multimedia Information Processing-PCM 2010, Springer Lecture Notes in Computer Science, 6298, 694–704.
Pereira, S., Ruanaidh, J. J. K.Ó., Deguillaume, F., Csurka, G., & Pun, T. (1999). Template based recovery of Fourier-based watermarks using log-polar and log–log maps. In IEEE Int. Conf. Multimedia Computing Systems (1 pp. 870–874).
Barni, M., Bartolini, F., Cappellini, V., & Piva, A. (1988). A DCT-domain system for robust image watermarking. Signal Processing, 66, 357–372.
Hsu, C. T., & Wu, J. L. (1998). Hidden digital watermarks in images. IEEE Transactions on Image Processing, 8(1), 58–68.
Huang, J. W., Shi, Y. Q., & Yi, S. (2000). Embedding image watermarks in DC components. IEEE Transactions on Circuits and Systems for Video Technology, 10(6), 974–979.
Cox, I. J., Kilian, J., Leighton, T., & Shamoon, T. (1997). Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 6(12), 1673–1687.
Barni, M., Bartolini, F., Cappellini, V., & Piva, A. (1998). A DCT-domain system for robust image watermarking. Signal Processing, 66, 357–372.
Ruanaidh, J. J. K., Dowling, W. J., & Boland, F. M. (1996). Phase watermarking of digital images. International Conference on Image Processing, 3, 239–242.
Stankovic, S., Djurovic, I., & Pitas, I. (2001). Watermarking in the space/spatial-frequency domain using two-dimensional Radon–Wigner distribution. IEEE Transactions on Image Processing, 10(4), 650–658.
Ruanaidh, J. J. K., & Pun, T. (1998). Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing, 66, 303–317.
Altun, O., Sharma G., & Bocko, M. (2005). Informed Watermark Embedding in the Fractional Fourier domain. Eusipco Proceeding (pp. 1–4).
Yu, F. Q., Zhang, Z. K., Xu, M. H. (2006). A Digital Watermarking Algorithm for Image Based on Fractional Fourier Transform. IEEE Conference on Industrial Electronics and Applications (pp. 1–5).
Boumard, S., & Mämmelä, A. (2009). Robust and accurate frequency and timing synchronization using chirp signals. IEEE Transactions on Broadcasting, 55(1), 115–123.
Tao, R., Li, X.-M., Li, Y.-L., & Wang, Y. (2009). Time-delay estimation of chirp signals in the Fractional Fourier Domain. IEEE Transactions on Signal Processing, 57(7), 2852–2855.
Scheiblhofer, S., Schuster, S., & Stelzer, A. (2006). Signal model and linearization for nonlinear chirps in FMCW Radar SAW-ID tag request. IEEE Transactions on Microwave theory and techniques, 54(4), 1477–1483.
Xia, X.-G. (2000). Discrete chirp-fourier transform and its application to chirp rate estimation. IEEE Transactions on Signal Processing, 48(11), 3122–3133.
Djurovic, I., Stankovic, S., & Pitas, I. (2001). Digital watermarking in the fractional Fourier transformation domain. Journal of Network and Computer Applications, 24, 167–173.
Qi, L., Tao, R., et al. (2003). Multi-component LFM signal detection and parameter estimation based on Fractional Fourier Transform. The Information of the Science, 33(8), 749–759.
Yang, H. M., & Yong, Q. (2007). Imperceptibility evaluation of gray image watermarking in DCT domain. Computer Engineering and Applications, 43(19), 13–16.
Pereira, S., & Pun, T. (2000). Fast robust template matching for affine resistant image watermarking. IEEE Transactions on Image Processing, 9(6), 1123–1129.
Tsang, K. F., & Au, O. C. (2001). A review on attacks, problems and weaknesses of digital watermarking and the pixel reallocation attack. Proceeding of SPIE, 4314, 385–393.
Song, C., Sudirman, S., Merabti, M., & Llewellyn-Jones, D. (2010). Analysis of Digital Image Watermark Attacks. IEEE Consumer Communications and Networking Conference (pp. 1–5).
Acknowledgments
This work is supported by the National Natural Science Foundation of China, No.61071211, No.60472044, and the Canada Research Chair Program. Authors are very thankful to Dr. Feng Zhang for giving very useful and suggestive discussion.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gao, L., Qi, L., Wang, Y. et al. Rotation Invariance in 2D-FRFT with Application to Digital Image Watermarking. J Sign Process Syst 72, 133–148 (2013). https://doi.org/10.1007/s11265-012-0722-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-012-0722-2