Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rotation Invariance in 2D-FRFT with Application to Digital Image Watermarking

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The extraction of rotation invariant representation is important for many signal processing tasks such as image analysis, computer vision, pattern recognition and so forth. In this paper, we show that, under certain conditions, the Two-Dimensional Fractional Fourier Transform (2D-FRFT) possesses this attractive property through mathematical analysis and extensive computer simulations. Based on this property, we propose a novel digital image watermarking method which combines 2D chirp signal with the addition and rotation invariant properties of 2D-FRFT in order to improve robustness and security of digital image watermark in 2D-FRFT domain. Experimental results show that the proposed method is robust against numerous watermarking attacks including rotation geometrical transform, JPEG compression, crop, median filtering, histogram equalization, salt & pepper noise, Gaussian lowpass filter, shift, dithering and Gaussian noise, and secures against unauthorized information copying and redistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Hu, M. K. (1962). Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory, 8(2), 179–187.

    Article  MATH  Google Scholar 

  2. Kashyap, R. L., & Khotanzad, A. (1986). A model-based method for rotation invariant texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(4), 472–481.

    Article  Google Scholar 

  3. Cohen, F. S., Zhang, Z., & Patel, M. A. (1991). Classification of rotated and scaled textured images using Gaussian Markov Random Fields models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2), 192–202.

    Article  Google Scholar 

  4. Tan, T. (1995). Geometric transform invariant texture analysis. Proceedings of SPIE, 2488, 475–485.

    Article  Google Scholar 

  5. Zhang, J., & Tan, T. (2002). Brief review of invariant texture analysis methods. Pattern Recognition, 35(3), 735–747.

    Article  MathSciNet  MATH  Google Scholar 

  6. Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62(2), 61–81.

    Google Scholar 

  7. Ozatakas, H. M., Barshan, B., Mendlovic, D., & Onural, L. (1996). Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 44(9), 2141–2150.

    Article  Google Scholar 

  8. Tao, R., Lin, Q., & Wang, Y. (2004). The theory and applications of Fractional Fourier Transform. Beijing: Tsinghua University Press.

    Google Scholar 

  9. Tao, R., Deng, B., & Wang, Y. (2006). Research progress of the fractional science in China. Information Science F Series, 99(1), 1–25.

    Article  MathSciNet  Google Scholar 

  10. Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics. Journal of the Institute of Mathematics and its Applications, 25(3), 241–265.

    Article  MathSciNet  MATH  Google Scholar 

  11. Almeida, L. B. (1994). The fractional Fourier Transform and time frequency representation. IEEE Transactions on Signal Processing, 42(11), 3084–3091.

    Article  Google Scholar 

  12. Barnsley, M. F. (1988). Fractal everywhere. Boston: Academic.

    Google Scholar 

  13. Shao, M., & Nikias, C. L. (1993). Signal processing with fractional lower order moment: stable processes and their applications. Proceedings of the IEEE, 81(7), 986–1010.

    Article  Google Scholar 

  14. Pei, S. C., Tseng, C. C., Yeh, M. H., & Shyu, J. J. (1998). Discrete fractional Hartley and Fourier transforms. IEEE Transactions on Circuits and Systems II, 45(6), 665–675.

    Article  MATH  Google Scholar 

  15. Candan, C., Alper Kutay, M., & Ozaktas, H. M. (2000). The discrete Fractional Fourier Transform. IEEE Transactions on Signal Processing, 48(5), 1329–1337.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ozatakas, H. M., & Mendlovic, D. (1993). Fourier transforms of fractional order and their optical interpretation. Optics Communications, 101, 163–169.

    Article  Google Scholar 

  17. Lohmann, A. W. (1993). Image rotation, Wigner rotation, and the fractional Fourier transform. Journal of the Optical Society of America A, 10(10), 2181–2186.

    Article  Google Scholar 

  18. Pei, S. C., & Yeh, M. H. (1998). Two dimensional discrete fractional Fourier transform. Signal Processing, 67, 99–108.

    Article  MATH  Google Scholar 

  19. Sarikaya, R., Gao, Y., & Saon, G. (2004). Fractional Fourier Transform features for speech recognition. IEEE International Conference on Acoustics Speech, and Signal Processing (pp. 529–532).

  20. Gao, L., Qi, L., Chen, E., Mu, X., & Guan, L. (2010). Recognizing Human emotional state based on the phase information of the two dimensional Fractional Fourier Transform. Advances in Multimedia Information Processing-PCM 2010, Springer Lecture Notes in Computer Science, 6298, 694–704.

    Article  Google Scholar 

  21. Pereira, S., Ruanaidh, J. J. K.Ó., Deguillaume, F., Csurka, G., & Pun, T. (1999). Template based recovery of Fourier-based watermarks using log-polar and log–log maps. In IEEE Int. Conf. Multimedia Computing Systems (1 pp. 870–874).

  22. Barni, M., Bartolini, F., Cappellini, V., & Piva, A. (1988). A DCT-domain system for robust image watermarking. Signal Processing, 66, 357–372.

    Article  Google Scholar 

  23. Hsu, C. T., & Wu, J. L. (1998). Hidden digital watermarks in images. IEEE Transactions on Image Processing, 8(1), 58–68.

    Google Scholar 

  24. Huang, J. W., Shi, Y. Q., & Yi, S. (2000). Embedding image watermarks in DC components. IEEE Transactions on Circuits and Systems for Video Technology, 10(6), 974–979.

    Article  Google Scholar 

  25. Cox, I. J., Kilian, J., Leighton, T., & Shamoon, T. (1997). Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 6(12), 1673–1687.

    Article  Google Scholar 

  26. Barni, M., Bartolini, F., Cappellini, V., & Piva, A. (1998). A DCT-domain system for robust image watermarking. Signal Processing, 66, 357–372.

    Article  MATH  Google Scholar 

  27. Ruanaidh, J. J. K., Dowling, W. J., & Boland, F. M. (1996). Phase watermarking of digital images. International Conference on Image Processing, 3, 239–242.

    Google Scholar 

  28. Stankovic, S., Djurovic, I., & Pitas, I. (2001). Watermarking in the space/spatial-frequency domain using two-dimensional Radon–Wigner distribution. IEEE Transactions on Image Processing, 10(4), 650–658.

    Article  MATH  Google Scholar 

  29. Ruanaidh, J. J. K., & Pun, T. (1998). Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing, 66, 303–317.

    Article  MATH  Google Scholar 

  30. Altun, O., Sharma G., & Bocko, M. (2005). Informed Watermark Embedding in the Fractional Fourier domain. Eusipco Proceeding (pp. 1–4).

  31. Yu, F. Q., Zhang, Z. K., Xu, M. H. (2006). A Digital Watermarking Algorithm for Image Based on Fractional Fourier Transform. IEEE Conference on Industrial Electronics and Applications (pp. 1–5).

  32. Boumard, S., & Mämmelä, A. (2009). Robust and accurate frequency and timing synchronization using chirp signals. IEEE Transactions on Broadcasting, 55(1), 115–123.

    Article  Google Scholar 

  33. Tao, R., Li, X.-M., Li, Y.-L., & Wang, Y. (2009). Time-delay estimation of chirp signals in the Fractional Fourier Domain. IEEE Transactions on Signal Processing, 57(7), 2852–2855.

    Article  MathSciNet  Google Scholar 

  34. Scheiblhofer, S., Schuster, S., & Stelzer, A. (2006). Signal model and linearization for nonlinear chirps in FMCW Radar SAW-ID tag request. IEEE Transactions on Microwave theory and techniques, 54(4), 1477–1483.

    Article  Google Scholar 

  35. Xia, X.-G. (2000). Discrete chirp-fourier transform and its application to chirp rate estimation. IEEE Transactions on Signal Processing, 48(11), 3122–3133.

    Article  MathSciNet  MATH  Google Scholar 

  36. Djurovic, I., Stankovic, S., & Pitas, I. (2001). Digital watermarking in the fractional Fourier transformation domain. Journal of Network and Computer Applications, 24, 167–173.

    Article  Google Scholar 

  37. Qi, L., Tao, R., et al. (2003). Multi-component LFM signal detection and parameter estimation based on Fractional Fourier Transform. The Information of the Science, 33(8), 749–759.

    Google Scholar 

  38. Yang, H. M., & Yong, Q. (2007). Imperceptibility evaluation of gray image watermarking in DCT domain. Computer Engineering and Applications, 43(19), 13–16.

    MathSciNet  Google Scholar 

  39. Pereira, S., & Pun, T. (2000). Fast robust template matching for affine resistant image watermarking. IEEE Transactions on Image Processing, 9(6), 1123–1129.

    Article  Google Scholar 

  40. Tsang, K. F., & Au, O. C. (2001). A review on attacks, problems and weaknesses of digital watermarking and the pixel reallocation attack. Proceeding of SPIE, 4314, 385–393.

    Article  Google Scholar 

  41. Song, C., Sudirman, S., Merabti, M., & Llewellyn-Jones, D. (2010). Analysis of Digital Image Watermark Attacks. IEEE Consumer Communications and Networking Conference (pp. 1–5).

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China, No.61071211, No.60472044, and the Canada Research Chair Program. Authors are very thankful to Dr. Feng Zhang for giving very useful and suggestive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Qi, L., Wang, Y. et al. Rotation Invariance in 2D-FRFT with Application to Digital Image Watermarking. J Sign Process Syst 72, 133–148 (2013). https://doi.org/10.1007/s11265-012-0722-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-012-0722-2

Keywords