Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

High-speed Signal Reconstruction for Compressive Sensing Applications

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Compressive sensing (CS) is an emerging technique that has great significance to the design of resource-constrained embedded signal processing systems. However, signal reconstruction remains a challenging problem due to its high computational complexity, which limits the practical application of compressive sensing. In this paper, we propose an algorithmic transformation referred to as Matrix Inversion Bypass (MIB) to reduce the computational complexity of Orthogonal Matching Pursuit (OMP) based signal reconstruction. The proposed MIB transform naturally leads to a parallel architecture for dedicated high-speed hardware implementations. Furthermore, by applying the proposed MIB transform, the energy consumption of signal reconstruction can be reduced as well. This is vital to many embedded signal processing systems that are powered by batteries or renewable energy sources. Simulation results of a wireless video monitoring system demonstrate the advantages of the proposed technique over the conventional OMP-based technique in improving the speed, energy efficiency, and performance of signal reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Candès, E. (2006). Compressive sampling. In Proceedings of the international congress of mathematics (pp. 1433–1452).

  2. Duarte, M., Davenport, M., Takhar, D., et al. (2008). Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2), 83–91.

    Article  Google Scholar 

  3. Robucci, R., Gray, J.D., Chiu, L.K., Romberg, J., Hasler, P. (2010). Compressive Sensing on a CMOS Separable-Transform Image Sensor. Proceedings of the IEEE, 98(6), 1089–1101.

    Article  Google Scholar 

  4. Haldar, J.P., Hernando, D., Liang, Z.P. (2011). Compressed-sensing MRI with random encoding. IEEE Transactions on Medical Imaging, 30(4), 893–903.

    Article  Google Scholar 

  5. Chen, S., Donoho, D., Saunders, M. (2001). Atomic decomposition by basis pursuit. SIAM Rev., 43(1), 129–159.

    Article  MATH  MathSciNet  Google Scholar 

  6. Candès, E., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    Article  MATH  Google Scholar 

  7. Figueiredo, M., Nowak, R., Wright, S. (2008). Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586–597.

    Article  Google Scholar 

  8. Tropp, J., & Gilbert, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MATH  MathSciNet  Google Scholar 

  9. Needell, D., & Vershynin, R. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 9(3), 317–334.

    Article  MATH  MathSciNet  Google Scholar 

  10. Donoho, D., Tsaig, Y., Drori, I., Starck, J. (2012). Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(2), 1094–1121.

    Article  MathSciNet  Google Scholar 

  11. Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.

    Article  MathSciNet  Google Scholar 

  12. Chen, Y., & Zhang, X. (2010). High-speed architecture for image reconstruction based on compressive sensing. In 2010 IEEE international conference on acoustics speech and signal processing (ICASSP) (pp. 1574–1577).

  13. Septimus, A., & Steinberg, R. (2010). Compressive sampling hardware reconstruction. In Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS) (pp. 3316–3319).

  14. Stanislaus, J., & Mohsenim, T. (2012). High performance compressive sensing reconstruction hardware with QRD process. In 2012 IEEE international symposium on circuits and systems (ISCAS) (pp. 29–32).

  15. Huang, G., & Wang, L. (2012). High-speed signal reconstruction with orthogonal matching pursuit via matrix inversion bypass. In 2012 IEEE workshop on signal processing systems (SiPS) (pp. 191–196).

  16. Donoho, D. (2006). Compressive sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MATH  MathSciNet  Google Scholar 

  17. Candès, E., Romberg, J., Tao, T. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MATH  Google Scholar 

  18. Candès, E., & Wakin, M. (2008). An introduction to compressive sampling. Signal Processing Magazine IEEE, 25(2), 21–30.

    Article  Google Scholar 

  19. Natarajan, B. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2), 227–234.

    Article  MATH  MathSciNet  Google Scholar 

  20. Tropp, J., & Wright, S. (2010). Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE, 98(6).

  21. Tropp, J. (2006). Just relax: convex programming methods for identifying sparse signals. IEEE Transactions on Information Theory, 52(3), 1030–1051.

    Article  MATH  MathSciNet  Google Scholar 

  22. Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In 2008 IEEE international conference on acoustics speech and signal processing (ICASSP) (pp. 3869–3872).

  23. Aharon, M., Elad, M., Bruckstein, A. (2008). Effiecient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technical Report.

  24. Golub, G., & Van Loan, C. (1983). Matrix computations. Baltimore, MD: Johns Hopkins University.

  25. Maslennikow, O., Lepekha, V., Sergiyenko, A., Tomas, A., Wyrzykowski, R. (2008). Parallel implementation of Cholesky LLT - algorithm in FPGA-based processor. Parallel processing and applied mathematics (pp. 137–695). Springer Berlin Heidelberg.

  26. Kangyu, N., Prasun, M., Somantika, D., Svetlana, R., Douglas, C. (2009). Image reconstruction by deterministic compressed sensing with chirp matrices. In 6th international symposium on multispectral image processing and pattern recognition.

  27. Björck, A. (1996). Numerical methods for least squares problems. SIAM.

  28. Needell, D., & Tropp, J.A. (2009). CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.

    Article  MATH  MathSciNet  Google Scholar 

  29. Needell, D., & Vershynin, R. (2010). Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 4(2), 310–316.

    Article  Google Scholar 

  30. Mishalli, M., & Eldar, Y. C. (2009). Blind multiband signal reconstruction: Compressed sensing for analog signals. IEEE Transactions on Signal Processing, 57(3), 993–1009.

    Article  MathSciNet  Google Scholar 

  31. Benzid, R., Marir, F., Boussaad, A., Benyoucef, M., Arar, D. (2003). Fixed percentage of wavelet coefficients to be zeroed for ECG compression. Electronics Letters, 39(11), 830–831.

    Article  Google Scholar 

  32. Vaswani, N., & Lu, W. (2010). Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Transactions on Signal Processing, 58(9), 4595–4607.

    Article  MathSciNet  Google Scholar 

  33. Ren, F., Dorrace, R., Xu, W., Markovic, D. (2013). A single-precision compressive sensing signal reconstruction engine on FPGAs. In 2013 23rd international conference on field programmable logic and applications (FPL) (pp. 1–4).

  34. Chen, C., Tramel, E.W., Fowler, J.E. (2011). Compressed-sensing recovery of images and video using multihypothesis predictions. In 2011 conference record of the forty fifth asilomar conference on signals, systems and computers (ASILOMAR) (pp. 1193–1198).

  35. Mun, S., & Fowler, J. (2009). Block compressed sensing of images using directional transforms. In 16th IEEE international conference on image processing (ICIP) (pp. 3021–3024).

  36. Romberg, J. (2008). Imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2), 14–20.

    Article  Google Scholar 

  37. Candès, E., Eldar, Y., Needell, D., Randall, P. (2010, 2009). Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1), 59–73.

  38. Rauhut, H., Schnass, K., Vandergheynst, P. (2008). Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 54(5), 2210–2219.

    Article  MATH  MathSciNet  Google Scholar 

  39. Eskicioglu, A., & Fisher, P. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation under CAREER Award CNS 0954037, CNS 1127084, and Office of Naval Research under Grant N000141210345.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxian Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Wang, L. High-speed Signal Reconstruction for Compressive Sensing Applications. J Sign Process Syst 81, 333–344 (2015). https://doi.org/10.1007/s11265-014-0954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-014-0954-4

Keywords