Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Monitoring of Ball Bearing Based on Improved Real-Time OPTICS Clustering

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents a new methodology of the Real-Time monitoring (IRT-OPTICS) for the detection of defect in rolling bearing by combining three domain features (time, frequency and scale), and reducing dimension by two methods: Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA), then classifying data by OPTICS method (Ordering Points To Identify the Clustering Structure). This methodology generated in three loops: initialization, detection and follow-up. The initialization loop is the fundamental and the based loop to start the surveillance. The detection loop is the phase where machines defects can be detected, in case there is defect, the third loop will start. The third loop is the follow-up; it aims to observe the degradation state. The decision to replace a component can be taken in the follow-up. These three loops use the combination of three features extraction methods: time domain, frequency domain and time scale domain also they use reduction of dimension by two methods, to combine features in three components and then to classify them by the OPTICS method. The proposed method has been validated numerically and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Rai, A., & Upadhyay, S. H. (2016). A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribology International, 96, 289–306. https://doi.org/10.1016/j.triboint.2015.12.037.

    Article  Google Scholar 

  2. Randall, R. B., & Antoni, J. (2011). Rolling element bearing diagnostics-a tutorial. Mechanical Systems and Signal Processing, 25(2), 485–520. https://doi.org/10.1016/j.ymssp.2010.07.017.

    Article  Google Scholar 

  3. Karacay, T., & Akturk, N. (2009). Experimental diagnostics of ball bearings using statistical and spectral methods. Tribology International, 42(6), 836–843. https://doi.org/10.1016/j.triboint.2008.11.003.

    Article  Google Scholar 

  4. Nguyen, K. T. P., Khlaief, A., Medjaher, K., Picot, A., Maussion, P., & Tobon, D. (2015). Analysis and comparison of multiple features for fault detection and prognostic in ball bearings. Proceedings of the European Conference of the PHM Society, 4(1), 1–9.

    Google Scholar 

  5. Wang, F., Sun, J., Yan, D., Zhang, S., Cui, L., & Xu, Y. (2015). A feature extraction method for fault classification of rolling bearing based on PCA. Journal of Physics: Conference Series, 628(1). https://doi.org/10.1088/1742-6596/628/1/012079.

  6. Song, F., Mei, D., & Li, H.. (2011). Feature selection based on linear discriminant analysis. Proceedings2010 International Conference on Intelligent System Design and Engineering Application, ISDEA 2010, vol. 1, pp. 746–749. doi: https://doi.org/10.1109/ISDEA.2010.311.

  7. Miao, Q., Wang, D., & Pecht, M.. (2011). Rolling element bearing fault feature extraction using EMD-based independent component analysis. 2011 IEEE International Conference on Prognostics and Health Management, PHM 2011 – Conference Proceedings. doi: https://doi.org/10.1109/ICPHM.2011.6024349.

  8. Kasun, L. L. C., Yang, Y., Bin Huang, G., & Zhang, Z. (2016). Dimension reduction with extreme learning machine. IEEE Transactions on Image Processing, 25(8), 3906–3918, Aug.. https://doi.org/10.1109/TIP.2016.2570569.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, W., Ming, Z., Xu, Z., Zhang, J., & Wang, Q. (2019). Online sequential extreme learning machine with dynamic forgetting factor. IEEE Access, 7, 179746–179757. https://doi.org/10.1109/ACCESS.2019.2959032.

    Article  Google Scholar 

  10. Sheng, J., Dong, S., Liu, Z., & Gao, H. (2016). Fault feature extraction method based on local mean decomposition Shannon entropy and improved kernel principal component analysis model. Advances in Mechanical Engineering, 8(8), 1–8. https://doi.org/10.1177/1687814016661087.

    Article  Google Scholar 

  11. Zhang, Y., Zuo, H., & Bai, F. (2013). Classification of fault location and performance degradation of a roller bearing. Measurement, 46(3), 1178–1189. https://doi.org/10.1016/j.measurement.2012.11.025.

    Article  Google Scholar 

  12. Malhi, A., & Gao, R. X. (2004). PCA-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement, 53(6), 1517–1525, Dec.. https://doi.org/10.1109/TIM.2004.834070.

    Article  Google Scholar 

  13. Vakharia, V., Gupta, V. K., & Kankar, P. K. (2015). Ball bearing fault diagnosis using supervised and unsupervised machine learning methods. The International Journal of Acoustics and Vibration, 20(4), 244–250. https://doi.org/10.20855/ijav.2015.20.4387.

    Article  Google Scholar 

  14. Li, C., Cerrada, M., Cabrera, D., Sanchez, R. V., Pacheco, F., Ulutagay, G., & Valente de Oliveira, J. (2018). A comparison of fuzzy clustering algorithms for bearing fault diagnosis. Journal of Intelligent & Fuzzy Systems, 34(6), 3565–3580, Jun.. https://doi.org/10.3233/JIFS-169534.

    Article  Google Scholar 

  15. Cao, W., Wang, X., Ming, Z., & Gao, J. (2018). A review on neural networks with random weights. Neurocomputing, 275, 278–287. https://doi.org/10.1016/j.neucom.2017.08.040.

    Article  Google Scholar 

  16. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X.. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231, Accessed: May 22, 2020. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220.

  17. Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999). OPTICS: Ordering points to identify the clustering structure. SIGMOD Record (ACM Special Interest Group on Management of Data), 28(2), 49–60, Jun.. https://doi.org/10.1145/304181.304187.

    Article  Google Scholar 

  18. Tian, J., Azarian, M. H., & Pecht, M.. (2014). Rolling element bearing fault detection using density-based clustering. 2014 International Conference on Prognostics and Health Management, pp. 1–7, doi: https://doi.org/10.1109/ICPHM.2014.7036387.

  19. Kanagala, H. K. & Jaya Rama Krishnaiah, V. V. (2016). A comparative study of K-Means, DBSCAN and OPTICS. In 2016 International Conference on Computer Communication and Informatics (ICCCI), Jan., pp. 1–6, doi: https://doi.org/10.1109/ICCCI.2016.7479923.

  20. Benmahdi, D., Rasolofondraibe, L., Chiementin, X., Murer, S., & Felkaoui, A. (2019). RT-OPTICS: Real-time classification based on OPTICS method to monitor bearings faults. Journal of Intelligent Manufacturing, 30(5), 2157–2170. https://doi.org/10.1007/s10845-017-1375-6.

    Article  Google Scholar 

  21. Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999). OPTICS: Ordering points to identify the clustering structure. SIGMOD Record (ACM Special Interest Group on Management of Data). doi: https://doi.org/10.1145/304181.304187.

  22. Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4), 469–483, Dec.. https://doi.org/10.1145/235815.235821.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chiementin, X. (2007). Localization and quantification of vibratory sources for a predictive maintenance in order to increase the diagnosis and the follow-up of the damage of the rotating mechanical components: Application to rolling bearings. University of Reims Champagne-Ardenne.

  24. Peng, Z. K., & Chu, F. L. (2004). Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mechanical Systems and Signal Processing, 18(2), 199–221. https://doi.org/10.1016/S0888-3270(03)00075-X.

    Article  Google Scholar 

  25. Gracia, A., González, S., Robles, V., & Menasalvas, E. (2014). A methodology to compare dimensionality reduction algorithms in terms of loss of quality. Information Sciences, 270, 1–27. https://doi.org/10.1016/j.ins.2014.02.068.

    Article  MathSciNet  Google Scholar 

  26. Zhang, Y. & Schneider, J. (2010) Projection penalties: Dimension reduction without loss. ICML 2010 – Proceedings, 27th International Conference on Machine Learning, pp. 1223–1230.

  27. Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319, Jul.. https://doi.org/10.1162/089976698300017467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hotait.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotait, H., Chiementin, X., Mouchaweh, M.S. et al. Monitoring of Ball Bearing Based on Improved Real-Time OPTICS Clustering. J Sign Process Syst 93, 221–237 (2021). https://doi.org/10.1007/s11265-020-01571-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01571-w

Keywords