Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An NDVI analysis of vegetation trends in an Andean watershed

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We performed a Landsat 5-TM derived normalized difference vegetation index (NDVI) analysis in a semi-arid watershed (2700 km2) in the Andes of southern Peru from 1985 to 2010. There, pastoralists rely on wetlands (bofedales) particularly during dry season months and in drought. We calculated annual dry season NDVI for 20 of the 26 years from 1985 to 2010 and used the mean to delineate wetlands in the watershed. To investigate the trends in NDVI, a multiple regression model with the covariates precipitation, temperature, Julian day, and year of image acquisition was performed on each cell (three million individual regressions). Results indicate there is a modest increase in NDVI for the majority of cells (81 %) in the watershed. Approximately 30 % of wetland areas display a decrease in NDVI. Dry season NDVI is moderately correlated with wet season precipitation (R 2 = 0.56, p < 0.05) but absent a trend in precipitation, NDVI trends are not explained by this variable. Changes in land management may result in more intensive use of wetlands, causing the decreasing vegetation trends in some locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahern FJ, Goodenough DG, Jain SC, Rao VR, Rochon G (1977) Use of clear lake as standard reflectors for atmospheric measurement. In: ERIM Proceeding of the 11th international symposium on remote sensing of the environment, vol 1, pp 731–755

  • Alatorre LC, Beguería S, Vicente-Serrano S (2011) Evolution of vegetation activity on vegetated, eroded, and erosion risk areas in the central Spanish Pyrenees, using multitemporal Landsat imagery. Earth Surf Process Landf 36:309–319. doi:10.1002/esp.2038

    Article  Google Scholar 

  • Alatorre L, Sánchez E, Amado J, Wiebe L, Torres M, Rojas H, Bravo L, López E, López E (2015) Analysis of the temporal and spatial evolution of recovery and degradation processes in vegetated areas using a time series of landsat TM images (1986–2011): central region of Chihuahua, Mexico. Open J For 5:162–180. doi:10.4236/ojf.2015.52016

    Google Scholar 

  • ALT-PNUD (2001) Evaluación de las características y distribución de los Bofedales en el ámbito Peruano del Sistema TDPS. Subcontrato 21.12. Facultad de Ciencias Biológicas Universidad Nacional del Altiplano. Puno-Perú

  • ATDR-Ramis (Administracion Tecnica del Distrito de Riego Ramis) (2008) Estudio Integral de los Recursos Hidricos de la Cuenca del Rio Ramis—Hidrologia

  • Bradley R, Keimig F, Diaz H, Hardy D (2009) Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophys Res Lett 36:17. doi:10.1029/2009GL037712

    Article  Google Scholar 

  • Brandt M, Verger A, Diouf AA, Baret F, Samimi C (2014) Local vegetation trends in the Sahel of Mali and Senegal using long time series FAPAR satellite products and field measurement (1982–2010). Remote Sens 6:2408–2434. doi:10.3390/rs6032408

    Article  Google Scholar 

  • Buffen A, Thompson L, Mosley-Thompson E, In Huh K (2009) Recently exposed vegetation reveals Holocene changes in the extent of the Quelccaya Ice Cap, Peru. Quatern Res 72:157–163

    Article  Google Scholar 

  • Chander G, Markham B, Helder D (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46

    Article  Google Scholar 

  • DIA Puno (Dirección de Información Agraria Puno) (2012) Información Estadística Agrícola-Series históricas (1996–2009). Available online: www.agropuno.gob.pe

  • Diaz H, Grosjean M, Graumilch L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4

    Article  Google Scholar 

  • Earle LR, Warner BG, Aravena R (2003) Rapid development of an unusual peat-accumulating ecosystem in the Chilean Altiplano. Quartern Res 59:2–11

    Article  Google Scholar 

  • Eastman JR, Sangermano F, Ghimire B, Zhu H, Chen H, Neeti N, Cai Y, Machado EA, Crema SC (2009) Seasonal trend analysis of image time series. Int J Remote Sens 30:2721–2726

    Article  Google Scholar 

  • Eckert S, Hüsler F, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16–28

    Article  Google Scholar 

  • ESRI (Environmental Systems Resource Institute) (2012) ArcMap 10.0. ESRI, Redlands, CA

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le Bao Q, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007: an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.1016/j.rse.2012.01.017

    Article  Google Scholar 

  • Forkel M, Carvalhais N, Verbesselt J, Mahecha MD, Neigh CSR, Reichstein M (2013) Trend change detection in NDVI time series: effects of inter-annual variability and methodology. Remote Sens 5:2113–2144. doi:10.3390/rs5052113

    Article  Google Scholar 

  • Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789

    Article  Google Scholar 

  • Hijmans R, van Etten J (2011) Raster: Geographic analysis and modeling with raster data. R package version 1.8-22. http://CRAN.R-project.org/package=raster

  • INEI (Instituto Nacional de Estadística e Informática) (2012) IV Censo Nacional Agropecuario 2012 (IV CENAGRO). Preliminary results. Available online: www.inei.gob.pe

  • Inquilla G (Interviewer) and Antonio Puma (Interviewee) (2013) “Antonio Puma, alcalde distrital de Orurillo en Puno, habla sobre el desarrollo agropecuario”. Written interview retrieved from NoticiasSer.Pe April 10, 2013. Available online: www.noticiasser.pe/10/04/2013/cabildo-abierto/antonio-puma-alcalde-de-la-municipalidad-distrital-de-orurillo-melgar-pun

  • Izquierdo AE, Foguet J, Grau HR (2015) Mapping and spatial characterization of Argentine High Andean peatbogs. Wetlands Ecol Manag. doi:10.1007/s11273-015-9433-3

    Google Scholar 

  • Jordan E, Ungerechts L, Caceres B, Penafiel A, Francou B (2005) Estimation by photogrammetry of the glacier recession on the Cotopaxi volcano (Ecuador) between 1956 and 1997. Hydrol Sci J 50:949–961

    Article  Google Scholar 

  • Josse C, Cuesta F, Navarro G, Barrena V, Cabrera E, Chacon-Moreno E, Gerreira W, Peralvo M, Saito J, Tovar A (2009) Ecosistemas de los Andes del Norte y Centro: Bolivia, Colombia, Ecuador, Peru y Venezuela. Secretaria General de la Comunidad Andina, Lima

    Google Scholar 

  • Liu G, Liu H, Yin Y (2013) Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environ Res Lett. doi:10.1088/1748-9326/8/2/025009

    Google Scholar 

  • Mazzarino M (2014) Environmental change and the agro-pastoralist livelihood in the Andes of Peru. Dissertation, University of Massachusetts Amherst  

  • Otto M, Scherer D, Richters J (2011) Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data. Hydrol Earth Syst Sci 15:1713–1727

    Article  Google Scholar 

  • Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Change Biol 17:3228–3239

    Article  Google Scholar 

  • PIEP (Plan de Infraestructura Economica Provincial de Azangaro) (2007) Municipalidad Provincial de Azangaro—MPA

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS Symposium, NASA SP-351 I:309–317

  • Salzmann N, Huggel C, Rohrer M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118

    Article  Google Scholar 

  • Searcy JK, Hardison CH (1960) Double mass curves. Manual of hydrology part I: general surface-water techniques. U.S. Geological Survey, Water-Supply Paper 1541-B

  • Squeo FA, Warner BG, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the central Andes (Bofedales: turberas de altamontaña de los Andes centrales). Rev Chil Hist Nat 79:245–255

    Article  Google Scholar 

  • Sun J, Cheng G, Li W, Sha Y, Yang Y (2013) On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens 5:1894–1911

    Article  Google Scholar 

  • Thibeault JM, Seth A, Garcia M (2010) Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. J Geophys Res 115:D08103. doi:10.1029/2009JD012718

    Article  Google Scholar 

  • Thomas RB (1979) Effects of change on high mountain human adaptive patterns. In: Webber PJ (ed) High altitude geoecology. AAAS and Westview Press, USA, pp 139–188

    Google Scholar 

  • Tucker CJ, Townshend JRG, Goff TE (1985) African land cover classification using satellite data. Science 227:369–375

    Article  CAS  PubMed  Google Scholar 

  • Tucker CJ, Dregne HE, Newcomb WW (1991) Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 253:299–301

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen WJD, Hartfield K, Miranda M, Meza F (2013) Trends and ENSO/AAO driven variability in NDVI derived productivity and phenology alongside the Andes Mountains. Remote Sens 5:1177–1203. doi:10.3390/rs5031177

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley R (2008) Climate change and tropical Andean glaciers: past, present and future. Earth-Sci Rev 89:79–96

    Article  Google Scholar 

  • Warner BG, Aravena R, Squeo FA (2008) Peatlands International 1/2008

  • Washington-Allen RA, Ramsey RD, West NE, Norton BE (1998) Change detection of the effect of severe drought on subsistence agropastoral communities on the Bolivian Altiplano. Int J Remote Sens 19:1319–1333

    Article  Google Scholar 

  • Yager K (2009) A Herder’s landscape: deglaciation, desiccation and managing green pastures in the Andean Puna. Dissertation, Yale University

  • Zhang T, Wang H (2015) Trend patterns of vegetative coverage and their underlying causes in the deserts of northwest China over 1982–2008. PLoS One 10(5):e0126044. doi:10.1371/journal.pone.0126044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Paul Barten, Brooke Thomas, and Thomas Leatherman for their comments and insights on how to improve the manuscript. Their support throughout the research process is greatly valued. This study was in part funded by a University of Massachusetts Amherst Dissertation Research Grant awarded to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meagan Mazzarino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figures S1–20

Predicteds versus Residuals Plots. Shows predicted NDVI on the X axis versus residual (observed NDVI − predicted NDVI) on the Y axis. A single observation is a light gray circle. Multiple points plotted on top of one another are increasingly darker (black ~10 observations). Density contours indicate where more than 20 points are overplotted. The center of the density contours indicates the approximate mode of both residuals and predicted NDVI. In these plots, residuals should average zero, and there should not be an obvious pattern. Predicted NDVIs less than 0 indicate unvegetated areas, while greater than zero indicate vegetation (PPTX 10062 kb)

Appendix

Appendix

See Fig. 8.

Fig. 8
figure 8figure 8

Boxplots of a observed NDVI values in the Nuñoa watershed for each year, b predicted NDVI values, and c residuals by year. Placeholders for the 6 years for which scenes were not analyzed are represented as bars at NDVI value of 0.3. Whiskers extend to the lowest (highest) datum within 1.5 IQR of the lower (upper) quartile

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzarino, M., Finn, J.T. An NDVI analysis of vegetation trends in an Andean watershed. Wetlands Ecol Manage 24, 623–640 (2016). https://doi.org/10.1007/s11273-016-9492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-016-9492-0

Keywords