Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

EEM-EHWSN: Enhanced Energy Management Scheme in Energy Harvesting Wireless Sensor Networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Energy conservation is the main major issue in wireless sensor networks (WSNs). Indeed, recharging energy sources in WSNs is often too costly, difficult and sometimes impossible. To extend the WSN lifetime without recharging, energy saving methods and energy harvesting systems are crucial. In this paper, we propose Enhanced Energy Management Scheme in Energy Harvesting Wireless Sensor Networks (EEM-EHWSN). EEM-EHWSN uses receiver-initiated communication that regulates the active/sleep periods through the introduction of an energy threshold policy and use of remaining energy in order to decrease the duty-cycle while ensuring a balance between the energy consumption and energy harvesting ability by each sensor node in the WSN. The EEM-EHWSN was implemented using OMNeT++/MiXiM, and the simulation results show that our scheme improves the overall performance of the network through reducing the mean latency, increasing the throughput and the packet delivery ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chiang, S. Y., Kan, Y. C., Chen, Y. S., Tu, Y. C., & Lin, H. C. (2016). Fuzzy computing model of activity recognition on WSN movement data for ubiquitous healthcare measurement. Sensors, 16(12), 2053.

    Article  Google Scholar 

  2. Akhtar, R., Leng, S., & Memon, I. (2014). Architecture for efficient content distribution in hybrid mobile social networks. Control Engineering and Electronics Engineering, 95, 399–409.

    Article  Google Scholar 

  3. Akhtar, R., Leng, S., Memon, I., Ali, M., & Zhang, L. (2015). Architecture of hybrid mobile social networks for efficient content delivery. Wireless Personal Communications, 80(1), 85–96.

    Article  Google Scholar 

  4. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2011). Body area networks: A survey. Mobile Networks and Application, 16(2), 171–193.

    Article  Google Scholar 

  5. Ahmed, H. I., Wei, P., Memon, I., Du, Y., & Xie, W. (2013). Estimation of time difference of arrival (TDoA) for the source radiates BPSK signal. IJCSI International Journal of Computer Science Issues, 10(3), 164–171.

    Google Scholar 

  6. Memon, I., & Arain, Q. A. (2017). Dynamic path privacy protection framework for continuous query service over road networks. World Wide Web, 20(4), 639–672.

    Article  Google Scholar 

  7. Memon, I., Chen, L., Arain, Q. A., Memon, H., & Chen, G. (2017). Pseudonym changing strategy with multiple mix zones for trajectory privacy protection in road networks. International Journal of Communication Systems, 31(1), e3437. https://doi.org/10.1002/dac.3437

    Article  Google Scholar 

  8. Ali, N. A., ElSayed, H. M., El-Soudani, M., Amer, H. H., & Daoud, R. M. (2012). Elongation of WSN lifetime using a centralised clustering technique. International Journal of Systems, Control and Communications, 4(4), 250–261.

    Article  Google Scholar 

  9. Batra, P. K., & Kant, K. (2016). A clustering algorithm with reduced cluster head variations in LEACH protocol. International Journal of Systems, Control and Communications, 7(4), 321–336.

    Article  Google Scholar 

  10. Fan, C. S. (2015). An energy-efficient two phases cluster head selection in corona-based wireless sensor networks. Int. J of Ad Hoc and Ubiquitous. Computing, 20(1), 17–25.

    Google Scholar 

  11. Chuang, P. J., Yang, S. H., & Lin, C. S. (2009). Energy-efficient clustering in wireless sensor networks. In A. Hua, S. L. Chang (Eds.), Algorithms and architectures for parallel processing. ICA3PP 2009. Lecture Notes in computer science (Vol. 5574, pp. 112–120). Berlin: Springer.

  12. Kim, H. Y. (2016). An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. International Journal of Cluster Computing, 19(1), 279–283.

    Article  Google Scholar 

  13. Arain, Q. A., Uqaili, M. A., Deng, Z., Memon, I., Jiao, J., Shaikh, M. A., et al. (2017). Clustering based energy efficient and communication protocol for multiple mix-zones over road networks. Wireless Personal Communications, 95(2), 411–428.

    Article  Google Scholar 

  14. Maheswar, R., Jayarajan, P., & Sheriff, F. N. (2013). A survey on duty cycling schemes for wireless sensor networks. International Journal of Computer Networks and Wireless Communications, 3(1), 37–40.

    Google Scholar 

  15. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Twenty-first annual joint conferences of the IEEE computer and communications societies. Proceedings. IEEE.

  16. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In SenSys 04: Proceedings of the 2nd international conference on Embedded networked sensor systems, New York, NY, USA (pp. 95–107). ACM.

  17. Buettner, M., Yee, G. V, Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In SenSys06: Proceedings of the 4th international conference on embedded networked sensor systems, New York, NY, USA (pp. 307–320). ACM.

  18. Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). RIMAC: A receiver initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In SenSys 08: Proceedings of the 6th ACM conference on embedded networked sensor systems.

  19. Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2011). An energy-efficient predictive wakeup MAC protocol for wireless sensor networks. In Proceedings of the 30th IEEE international conference on computer communications (INFOCOM 2011) (pp. 1305–1313).

  20. Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.

    Article  Google Scholar 

  21. Ma, S., Yang, Y., Qian, Y., Sharif, H., & Alahmad, M. (2016). Energy harvesting for wireless sensor networks: Applications and challenges in smart grid. International Journal of Sensor Networks, 21(4), 226–241.

    Article  Google Scholar 

  22. Jeličić. V. (2011). Power management in wireless sensor networks with high-consuming sensors. Qualifying Doctoral Examination.

  23. Fafoutis, X., & Dragoni, N. (2011). ODMAC: An on-demand MAC protocol for energy harvesting wireless sensor networks. In Proceedings of 8th ACM symposium on performance evaluation of wireless ad-hoc, sensor, and ubiquitous network, Miami, FL, USA (pp. 49–56).

  24. Nguyen, K., Nguyen, V. H., Le, D. D., Ji, Y., Duong, D. A., & Yamada, S. (2014). ERI-MAC: An energy harvested receiver initiated MAC protocol for wireless sensor networks. International Journal of Distributed Sensor Networks, 2014, 1–8.

    Google Scholar 

  25. Yoo, H., Shim, M., & Kim, D. (2012). Dynamic dutycycle scheduling schemes for energy-harvesting wireless sensor networks. IEEE Communications Letters, 16(2), 202–204.

    Article  Google Scholar 

  26. Ramezani, P., & Pakravan, R. M. (2015). Overview of MAC protocols for energy harvesting wireless sensor networks. In IEEE 26th international symposium on personal, indoor and mobile radio communications-(PIMRC): Mobile and wireless networks (pp. 2032–2037).

  27. Kosunalp, S. (2015). MAC protocols for energy harvesting wireless sensor networks: Survey. IEEE 26th International ETRI Journal, 37(4), 804–812.

    Article  Google Scholar 

  28. Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad-Hoc Network, 9(3), 300–323.

    Article  Google Scholar 

  29. Eu, Z. A., & Tan, H. P. (2012). Probabilistic polling for multi-hop energy harvesting wireless sensor networks. In IEEE Interenational Symposium on Ad hoc Sensor Network, Ottawa, Canada, June 10–15 (pp. 271–275).

  30. Fujii, C., & Seah, W. K. G. (2011). Multi-tier probabilistic polling in wireless sensor networks powered by energy harvesting. IEEE international conference on intelligent sensors, sensor network. Information process, Adelaide, Australia, Dec 6–9 (pp. 383–388).

  31. Kim, S. C., Jeaon, J. H., & Park, H. J. (2012). QoS aware energy-efficient (QAEE) MAC protocol for energy harvesting wireless sensor networks. In Convergence hybrid information, technology, Daejeon, Republic of Korea (pp. 41–48).

  32. Layerle, D., & Kwasinski, A. (2011). A power efficient pulsed mac protocol for body area networks. In IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC), Tronto, ON, Canada, Sept 11–14 (pp. 2244–2248).

  33. Kim, Y., Park, C. W., & Lee, T. J. (2014). MAC protocol for energy harvesting users in cognitive radio networks. In: Proceedings of 8th international conference on ubiquitous information management and communication.

  34. Liu, H. I., He, W. J., & Seah, W. K. G. (2014). LEBMAC: Load and energy balancing MAC protocol for energy harvesting powered wireless sensor networks. In 20th IEEE international conference on parallel and distributed systems (ICPADS), Hsinchu, Taiwan.

  35. Lin, H. H., Shih, M. J., Wei, H. Y., & Vannithamby, R. (2014). DeepSleep: IEEE 802.11 enhancement for energy-harvesting machine-to-machine communications. Wireless Networks, 21(2), 357–370.

    Article  Google Scholar 

  36. Iannello, F., Simeone, O., & Spagnolini, U. (2012). Medium access control protocols for wireless sensor networks with energy harvesting. IEEE Transactions on Communications, 60(5), 1381–1389.

    Article  Google Scholar 

  37. Tadayon, N., Wang, H., & Michel, H. E. (2013). Power management in SMAC-based energy harvesting wireless sensor networks using queuing analysis. Journal of Network and Computer Applications, 36(3), 1008–1017.

    Article  Google Scholar 

  38. Köpke, A., Swigulski, M., Wessel, K., Willkomm, D., Haneveld, P. T. K., Parker, T. E. V., et al. (2008). Simulating wireless and mobile networks in omnet++ the mixim vision. In Proceedings of the 1st international conference on simulation tools and techniques for communications, networks and systems (SIMUTools). Marseille, France: ICST (pp. 71:1–71:8).

  39. MiXiM Documentation. http://mixim.sourceforge.net/. October 2017.

  40. Nguyen, V. T., Gautier, M., & Berder, O. (2014). Implementation of an adaptive energy-efficient MAC protocol in OMNeT++/MiXiM. 1st OMNeT++ Community Summit, France (pp. 1–4).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Bengheni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengheni, A., Didi, F. & Bambrik, I. EEM-EHWSN: Enhanced Energy Management Scheme in Energy Harvesting Wireless Sensor Networks. Wireless Netw 25, 3029–3046 (2019). https://doi.org/10.1007/s11276-018-1701-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1701-8

Keywords