Abstract
This paper investigates the optimal path selection problem for end-to-end (e2e) outage probability minimization in clustered cognitive radio sensor networks. In order to improve outage performance of the optimal path, under a high node density regime, we consider feasibility of virtual multiple-input single-output (v-MISO) links in addition to conventional single-input single-output (SISO) links in the path. Since sensor nodes in such networks are allowed to access the spectrum of the primary network only in an opportunistic manner, the path selection problem is studied under the constraints of probabilistic interference to PU receivers and only single use of any PU channel along the path. The above problem is formulated as a joint hop-constrained routing, spectrum assignment and transmit power control problem. A convex optimization framework is used to find a closed form expression for the optimal transmit power of each transmitting node along the optimal route. Extension of the analytical result facilitates design of a novel routing algorithm, called spectrum aware-minimum outage intelligent cooperative routing (SA-MOICR) algorithm, which not only selects the minimum outage path for a given routing session, but also determines the number of nodes and the unique PU channel to be used for transmission in each hop along the path. Simulation results are found to corroborate our analytical results and quantify the significant improvement of the SA-MOICR scheme over only SISO or only v-MISO based routing solutions in terms of the achievable e2e outage probability.
Similar content being viewed by others
References
Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Wireless Communications, 19(1), 23.
Song, L., & Hatzinakos, D. (2007). A cross-layer architecture of wireless sensor networks for target tracking. IEEE/ACM Transactions on Networking, 15(1), 145.
Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921.
Misra, S., Reisslein, M., & Xue, G. (2008). A survey of multimedia streaming in wireless sensor networks. IEEE Communications Surveys Tutorials, 10(4), 18.
Chiwewe, T. M., Mbuya, C. F., & Hancke, G. P. (2015). Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview. IEEE Transactions on Industrial Informatics, 11(6), 1466.
Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34.
Fadel, E., Faheem, M., Gungor, V., Nassef, L., Akkari, N., Malik, M., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications, 101, 106.
Felice, M. D., Doost-Mohammady, R., Chowdhury, K. R., & Bononi, L. (2012). Smart radios for smart vehicles: Cognitive vehicular networks. IEEE Vehicular Technology Magazine, 7(2), 26.
Majumdar, C., Lee, D., Patel, A. A., Merchant, S. N., & Desai, U. B. (2017). Packet size optimization for cognitive radio sensor networks aided internet of things. IEEE Access, 5, 6325.
Jakllari, G., Krishnamurthy, S. V., Faloutsos, M., Krishnamurthy, P. V., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transaction on Mobile Computing, 6(6), 579.
Aksu, A., & Ercetin, O. (2008). Reliable multi-hop routing with cooperative transmissions in energy-constrained networks. IEEE Transactions on Wireless Communications, 7(8), 2861.
Pandana, C., Siriwongpairat, W. P., Himsoon, T., & Liu, K. J. R. (2006). Distributed cooperative routing algorithms for maximizing network lifetime. In Proceedings of the IEEE WCNC Las Vegas (USA) (Vol. 1, p. 451).
Lin, J., Jung, H., Chang, Y. J., Jung, J. W., & Weitnauer, M. A. (2015). On cooperative transmission range extension in multi-hop wireless ad-hoc and sensor networks: A review. Ad Hoc Networks, 29, 117.
Xie, K., Wang, X., Wen, J., & Cao, J. (2016). Cooperative routing with relay assignment in multiradio multihop wireless networks. IEEE/ACM Transactions on Networking, 24(2), 859.
Deng, Q., & Klein, A. G. (2012). Diversity of multi-hop cluster-based routing with arbitrary relay selection. IET Communications, 6(9), 1054.
Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communications Surveys Tutorials, 17(2), 888.
Ren, J., Zhang, Y., Ye, Q., Yang, K., Zhang, K., & Shen, X. S. (2016). Exploiting secure and energy-efficient collaborative spectrum sensing for cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 15(10), 6813.
Liu, X., Evans, B. G., & Moessner, K. (2015). Energy-efficient sensor scheduling algorithm in cognitive radio networks employing heterogeneous sensors. IEEE Transactions on Vehicular Technology, 64(3), 1243.
Usman, M., Har, D., & Koo, I. (2016). Energy-efficient infrastructure sensor network for ad hoc cognitive radio network. IEEE Sensors Journal, 16(8), 2775.
Zhang, D., Chen, Z., Ren, J., Zhang, N., Awad, M. K., Zhou, H., et al. (2017). Energy-harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology, 66(1), 831.
Ren, J., Zhang, Y., Deng, R., Zhang, N., Zhang, D., & Shen, X. (2017). Joint channel access and sampling rate control in energy harvesting cognitive radio sensor networks. IEEE Transactions on Emerging Topics in Computing, PP(99), 1.
Ren, J., Hu, J., Zhang, D., Guo, H., Zhang, Y., & Shen, X. (2018). Rf energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges. IEEE Communications Magazine, 56(1), 104.
Ren, J., Zhang, Y., Zhang, N., Zhang, D., & Shen, X. (2016). Dynamic channel access to improve energy efficiency in cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 15(5), 3143.
Zhu, J., Song, Y., Jiang, D., & Song, H. (2016). Multi-armed bandit channel access scheme with cognitive radio technology in wireless sensor networks for the internet of things. IEEE Access, 4, 4609.
Shah, G. A., & Akan, O. B. (2015). Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 64(2), 757.
Du, M., Zheng, M., & Song, M. (2018). An adaptive preamble sampling based MAC protocol for cognitive radio sensor networks. IEEE Sensors Letters, 2(1), 1.
Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 15(2), 551.
Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys Tutorials, 16(1), 92.
Saleem, Y., Yau, K. L. A., Mohamad, H., Ramli, N., & Rehmani, M. H. (2015). SMART: A SpectruM-Aware clusteR-based rouTing scheme for distributed cognitive radio networks. Computer Networks, 91, 196.
Pourpeighambar, B., Dehghan, M., & Sabaei, M. (2017). Non-cooperative reinforcement learning based routing in cognitive radio networks. Computer Communications, 106, 11.
Shah, G. A., & Akan, O. B. (2013). Spectrum-aware cluster-based routing for cognitive radio sensor networks. In Proceedings of the IEEE ICC Budapest (Hungary) (pp. 2885–2889).
Shah, G. A., Alagoz, F., Fadel, E. A., & Akan, O. B. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 63(7), 3369.
Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326.
Basak, S., & Acharya, T. (2015). Joint power allocation and routing in outage constrained cognitive radio ad hoc networks. Mobile Networks and Applications, 20(5), 636.
Basak, S., & Acharya, T. (2017). Cross layer optimization for outage minimizing routing in cognitive radio ad hoc networks with primary users outage protection. Journal of Network and Computer Applications, 98, 114.
Basak, S., & Acharya, T. (2016). Route selection for interference minimization to primary users in cognitive radio ad hoc networks: A cross layer approach. Physical Communication, 19, 118.
Lin, Y. E., Liu, K. H., & Hsieh, H. Y. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461.
Hasna, M. O., & Alouini, M. S. (2004). Optimal power allocation for relayed transmissions over rayleigh-fading channels. IEEE Transactions on Wireless Communications, 3(6), 1999.
Huang, S., Chen, H., Zhang, Y., & Zhao, F. (2012). Energy-efficient cooperative spectrum sensing with amplify-and-forward relaying. IEEE Communications Letters, 16(4), 450.
Maham, B., & Popovski, P. (2015). Cognitive multiple-antenna network with outage and rate margins at the primary system. IEEE Transactions on Vehicular Technology, 64(6), 2409.
Kang, X., Zhang, R., Liang, Y. C., & Garg, H. K. (2011). Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications, 29(2), 374.
Bertsekas, D., & Gallager, R. (1992). Data networks (2nd ed.). Englewood Cliffs: Prentice-Hall.
Tse, D., & Viswanath, P. (2004). Fundamentals of wireless communications. Cambridge: Cambridge University Press.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Proof of probability of interference in (8)
Assuming \(K_{1} = P_{p}^{k}\), \(K_{2} = P_{i}^{k}\), \(K_{3} = N_{0}\), \(X = \vert g_{k,k}^{k} \vert ^{2}\) with rate parameter \(\lambda _{1}\), \(Y = \sum \nolimits _{l=0}^{n_{i}-1} \vert g_{i,k}^{k}(l) \vert ^{2}\). The probability of interference following (7) can be expressed as,
Y is a chi-square distributed with \(2n_{i}\) degrees of freedom, and the density function is given by,
Let us assume, \(\left( \frac{K_{1}x}{K_{2}\gamma _{th}^{PU}}-\frac{K_{3}}{K_{2}}\right) =\phi\), then \(dx = \frac{K_{2}\gamma _{th}^{PU}}{K_{1}} d\phi\). Now if \(x = \frac{K_{3}\gamma _{th}^{PU}}{K_{1}}\), then \(\phi = 0\).
Therefore, from (35)
Appendix 2: Proof of e2e SU outage probability (15)
Using (13), (14) is represented as,
Taking \(\log\) in both sides,
As we assumed in the paper \(\frac{P_{i}^{k}d_{i,j}^{-\alpha }}{N_{0}}>> \gamma _{th}^{SU}\). Therefore, \(\log \left( 1-\frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\right) \approx -\frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\) and \(\frac{1}{n_{i}!} < 1\) for any real number.
Rights and permissions
About this article
Cite this article
Basak, S., Acharya, T. Spectrum-aware outage minimizing cooperative routing in cognitive radio sensor networks. Wireless Netw 26, 1069–1084 (2020). https://doi.org/10.1007/s11276-018-1844-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-018-1844-7