Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spectrum-aware outage minimizing cooperative routing in cognitive radio sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates the optimal path selection problem for end-to-end (e2e) outage probability minimization in clustered cognitive radio sensor networks. In order to improve outage performance of the optimal path, under a high node density regime, we consider feasibility of virtual multiple-input single-output (v-MISO) links in addition to conventional single-input single-output (SISO) links in the path. Since sensor nodes in such networks are allowed to access the spectrum of the primary network only in an opportunistic manner, the path selection problem is studied under the constraints of probabilistic interference to PU receivers and only single use of any PU channel along the path. The above problem is formulated as a joint hop-constrained routing, spectrum assignment and transmit power control problem. A convex optimization framework is used to find a closed form expression for the optimal transmit power of each transmitting node along the optimal route. Extension of the analytical result facilitates design of a novel routing algorithm, called spectrum aware-minimum outage intelligent cooperative routing (SA-MOICR) algorithm, which not only selects the minimum outage path for a given routing session, but also determines the number of nodes and the unique PU channel to be used for transmission in each hop along the path. Simulation results are found to corroborate our analytical results and quantify the significant improvement of the SA-MOICR scheme over only SISO or only v-MISO based routing solutions in terms of the achievable e2e outage probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Wireless Communications, 19(1), 23.

    Google Scholar 

  2. Song, L., & Hatzinakos, D. (2007). A cross-layer architecture of wireless sensor networks for target tracking. IEEE/ACM Transactions on Networking, 15(1), 145.

    Google Scholar 

  3. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921.

    Google Scholar 

  4. Misra, S., Reisslein, M., & Xue, G. (2008). A survey of multimedia streaming in wireless sensor networks. IEEE Communications Surveys Tutorials, 10(4), 18.

    Google Scholar 

  5. Chiwewe, T. M., Mbuya, C. F., & Hancke, G. P. (2015). Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview. IEEE Transactions on Industrial Informatics, 11(6), 1466.

    Google Scholar 

  6. Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34.

    Google Scholar 

  7. Fadel, E., Faheem, M., Gungor, V., Nassef, L., Akkari, N., Malik, M., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications, 101, 106.

    Google Scholar 

  8. Felice, M. D., Doost-Mohammady, R., Chowdhury, K. R., & Bononi, L. (2012). Smart radios for smart vehicles: Cognitive vehicular networks. IEEE Vehicular Technology Magazine, 7(2), 26.

    Google Scholar 

  9. Majumdar, C., Lee, D., Patel, A. A., Merchant, S. N., & Desai, U. B. (2017). Packet size optimization for cognitive radio sensor networks aided internet of things. IEEE Access, 5, 6325.

    Google Scholar 

  10. Jakllari, G., Krishnamurthy, S. V., Faloutsos, M., Krishnamurthy, P. V., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transaction on Mobile Computing, 6(6), 579.

    Google Scholar 

  11. Aksu, A., & Ercetin, O. (2008). Reliable multi-hop routing with cooperative transmissions in energy-constrained networks. IEEE Transactions on Wireless Communications, 7(8), 2861.

    Google Scholar 

  12. Pandana, C., Siriwongpairat, W. P., Himsoon, T., & Liu, K. J. R. (2006). Distributed cooperative routing algorithms for maximizing network lifetime. In Proceedings of the IEEE WCNC Las Vegas (USA) (Vol. 1, p. 451).

  13. Lin, J., Jung, H., Chang, Y. J., Jung, J. W., & Weitnauer, M. A. (2015). On cooperative transmission range extension in multi-hop wireless ad-hoc and sensor networks: A review. Ad Hoc Networks, 29, 117.

    Google Scholar 

  14. Xie, K., Wang, X., Wen, J., & Cao, J. (2016). Cooperative routing with relay assignment in multiradio multihop wireless networks. IEEE/ACM Transactions on Networking, 24(2), 859.

    Google Scholar 

  15. Deng, Q., & Klein, A. G. (2012). Diversity of multi-hop cluster-based routing with arbitrary relay selection. IET Communications, 6(9), 1054.

    MathSciNet  Google Scholar 

  16. Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communications Surveys Tutorials, 17(2), 888.

    Google Scholar 

  17. Ren, J., Zhang, Y., Ye, Q., Yang, K., Zhang, K., & Shen, X. S. (2016). Exploiting secure and energy-efficient collaborative spectrum sensing for cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 15(10), 6813.

    Google Scholar 

  18. Liu, X., Evans, B. G., & Moessner, K. (2015). Energy-efficient sensor scheduling algorithm in cognitive radio networks employing heterogeneous sensors. IEEE Transactions on Vehicular Technology, 64(3), 1243.

    Google Scholar 

  19. Usman, M., Har, D., & Koo, I. (2016). Energy-efficient infrastructure sensor network for ad hoc cognitive radio network. IEEE Sensors Journal, 16(8), 2775.

    Google Scholar 

  20. Zhang, D., Chen, Z., Ren, J., Zhang, N., Awad, M. K., Zhou, H., et al. (2017). Energy-harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology, 66(1), 831.

    Google Scholar 

  21. Ren, J., Zhang, Y., Deng, R., Zhang, N., Zhang, D., & Shen, X. (2017). Joint channel access and sampling rate control in energy harvesting cognitive radio sensor networks. IEEE Transactions on Emerging Topics in Computing, PP(99), 1.

    Google Scholar 

  22. Ren, J., Hu, J., Zhang, D., Guo, H., Zhang, Y., & Shen, X. (2018). Rf energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges. IEEE Communications Magazine, 56(1), 104.

    Google Scholar 

  23. Ren, J., Zhang, Y., Zhang, N., Zhang, D., & Shen, X. (2016). Dynamic channel access to improve energy efficiency in cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 15(5), 3143.

    Google Scholar 

  24. Zhu, J., Song, Y., Jiang, D., & Song, H. (2016). Multi-armed bandit channel access scheme with cognitive radio technology in wireless sensor networks for the internet of things. IEEE Access, 4, 4609.

    Google Scholar 

  25. Shah, G. A., & Akan, O. B. (2015). Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 64(2), 757.

    Google Scholar 

  26. Du, M., Zheng, M., & Song, M. (2018). An adaptive preamble sampling based MAC protocol for cognitive radio sensor networks. IEEE Sensors Letters, 2(1), 1.

    Google Scholar 

  27. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 15(2), 551.

    Google Scholar 

  28. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys Tutorials, 16(1), 92.

    Google Scholar 

  29. Saleem, Y., Yau, K. L. A., Mohamad, H., Ramli, N., & Rehmani, M. H. (2015). SMART: A SpectruM-Aware clusteR-based rouTing scheme for distributed cognitive radio networks. Computer Networks, 91, 196.

    Google Scholar 

  30. Pourpeighambar, B., Dehghan, M., & Sabaei, M. (2017). Non-cooperative reinforcement learning based routing in cognitive radio networks. Computer Communications, 106, 11.

    Google Scholar 

  31. Shah, G. A., & Akan, O. B. (2013). Spectrum-aware cluster-based routing for cognitive radio sensor networks. In Proceedings of the IEEE ICC Budapest (Hungary) (pp. 2885–2889).

  32. Shah, G. A., Alagoz, F., Fadel, E. A., & Akan, O. B. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 63(7), 3369.

    Google Scholar 

  33. Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326.

    Google Scholar 

  34. Basak, S., & Acharya, T. (2015). Joint power allocation and routing in outage constrained cognitive radio ad hoc networks. Mobile Networks and Applications, 20(5), 636.

    Google Scholar 

  35. Basak, S., & Acharya, T. (2017). Cross layer optimization for outage minimizing routing in cognitive radio ad hoc networks with primary users outage protection. Journal of Network and Computer Applications, 98, 114.

    Google Scholar 

  36. Basak, S., & Acharya, T. (2016). Route selection for interference minimization to primary users in cognitive radio ad hoc networks: A cross layer approach. Physical Communication, 19, 118.

    Google Scholar 

  37. Lin, Y. E., Liu, K. H., & Hsieh, H. Y. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461.

    Google Scholar 

  38. Hasna, M. O., & Alouini, M. S. (2004). Optimal power allocation for relayed transmissions over rayleigh-fading channels. IEEE Transactions on Wireless Communications, 3(6), 1999.

    Google Scholar 

  39. Huang, S., Chen, H., Zhang, Y., & Zhao, F. (2012). Energy-efficient cooperative spectrum sensing with amplify-and-forward relaying. IEEE Communications Letters, 16(4), 450.

    Google Scholar 

  40. Maham, B., & Popovski, P. (2015). Cognitive multiple-antenna network with outage and rate margins at the primary system. IEEE Transactions on Vehicular Technology, 64(6), 2409.

    Google Scholar 

  41. Kang, X., Zhang, R., Liang, Y. C., & Garg, H. K. (2011). Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications, 29(2), 374.

    Google Scholar 

  42. Bertsekas, D., & Gallager, R. (1992). Data networks (2nd ed.). Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  43. Tse, D., & Viswanath, P. (2004). Fundamentals of wireless communications. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamaghna Acharya.

Appendices

Appendix 1: Proof of probability of interference in (8)

Assuming \(K_{1} = P_{p}^{k}\), \(K_{2} = P_{i}^{k}\), \(K_{3} = N_{0}\), \(X = \vert g_{k,k}^{k} \vert ^{2}\) with rate parameter \(\lambda _{1}\), \(Y = \sum \nolimits _{l=0}^{n_{i}-1} \vert g_{i,k}^{k}(l) \vert ^{2}\). The probability of interference following (7) can be expressed as,

$$\begin{aligned} Pr\left( \frac{K_{1}X}{K_{2}Y+K_{3}}<\gamma _{th}^{PU}\right) =1-Pr\left( Y\le \frac{K_{1}X}{K_{2}\gamma _{th}^{PU}}-\frac{K_{3}}{K_{2}}\right) \end{aligned}$$
(32)

Y is a chi-square distributed with \(2n_{i}\) degrees of freedom, and the density function is given by,

$$\begin{aligned}&f\left( y \right) = \frac{y^{n_{i}-1} e^{-y}}{(n_{i}-1)!}, \quad y\ge 0 \end{aligned}$$
(33)
$$\begin{aligned}&Pr\left( Y\le \frac{K_{1}X}{K_{2}\gamma _{th}^{PU}}-\frac{K_{3}}{K_{2}}\right) \nonumber \\&\quad =\int \limits _{\frac{K_{3}\gamma _{th}^{PU}}{K_{1}}}^{\infty } \lambda _{1}e^{-\lambda _{1}x} \int \limits _{0}^{\frac{K_{1}x}{K_{2}\gamma _{th}^{PU}}-\frac{K_{3}}{K_{2}}} \frac{y^{n_{i}-1} e^{-y}}{(n_{i}-1)!} dy\,dx \end{aligned}$$
(34)
$$\begin{aligned}&=\int \limits _{\frac{K_{3}\gamma _{th}^{PU}}{K_{1}}}^{\infty }\lambda _{1}e^{-\lambda _{1}x}\,dx-\int \limits _{\frac{K_{3}\gamma _{th}^{PU}}{K_{1}}}^{\infty } \sum \limits _{l=0}^{n_{i}-1} \frac{\lambda _{1}}{l!} \left( \frac{K_{1}x}{K_{2}\gamma _{th}^{PU}}-\frac{K_{3}}{K_{2}}\right) ^{l}\nonumber \\&\quad \times e^{-\left\{ \left( \lambda _{1}+\frac{K_{1}}{K_{2}\gamma _{th}^{PU}}\right) x-\frac{K_{3}}{K_{2}} \right\} }\, dx \end{aligned}$$
(35)

Let us assume, \(\left( \frac{K_{1}x}{K_{2}\gamma _{th}^{PU}}-\frac{K_{3}}{K_{2}}\right) =\phi\), then \(dx = \frac{K_{2}\gamma _{th}^{PU}}{K_{1}} d\phi\). Now if \(x = \frac{K_{3}\gamma _{th}^{PU}}{K_{1}}\), then \(\phi = 0\).

Therefore, from (35)

$$\begin{aligned}&=e^{-\lambda _{1}\frac{K_{3}\gamma _{th}^{PU}}{K_{1}}}-\int \limits _{0}^{\infty } \sum \limits _{l=0}^{n_{i}-1} \frac{\lambda _{1}\phi ^{l}K_{2}\gamma _{th}^{PU}}{l!K_{1}} \nonumber \\&\quad \times e^{-\left\{ \phi \left( 1+\frac{\lambda _{1}K_{2}\gamma _{th}^{PU}}{K_{1}}\right) + \frac{\lambda _{1}K_{3}\gamma _{th}^{PU}}{K_{1}}\right\} }d\phi \end{aligned}$$
(36)
$$\begin{aligned}&=e^{-\frac{\lambda _{1}K_{3}\gamma _{th}^{PU}}{K_{1}}}- \frac{\lambda _{1}K_{2}\gamma _{th}^{PU}}{K_{1}} \nonumber \\&\quad \times e^{-\frac{\lambda _{1}K_{3}\gamma _{th}^{PU}}{K_{1}}} \sum \limits _{l=0}^{n_{i}-1} \left\{ 1+\frac{\lambda _{1}K_{2}\gamma _{th}^{PU}}{K_{1}} \right\} ^{-\left( l+1\right) } \end{aligned}$$
(37)
$$\begin{aligned}&=e^{-\frac{\lambda _{1}K_{3}\gamma _{th}^{PU}}{K_{1}}}\left[ 1-\frac{\frac{\lambda _{1}K_{2}\gamma _{th}^{PU}}{K_{1}}}{1+\frac{\lambda _{1}K_{2}\gamma _{th}^{PU}}{K_{1}}} \left\{ \frac{1-\left( 1+\frac{\lambda _{1}K_{2}\gamma _{th}^{PU}}{K_{1}}\right) ^{-n_{i}}}{1-\left( 1+\frac{\lambda _{1}K_{2}\gamma _{th}^{PU}}{K_{1}}\right) ^{-1}} \right\} \right] \end{aligned}$$
(38)

Appendix 2: Proof of e2e SU outage probability (15)

Using (13), (14) is represented as,

$$\begin{aligned}&\prod _{i=1}^{L}a_{i}^{k} {\mathcal {P}}\left( {\mathcal {H}}_{0}\right) \left( 1-{\mathcal {P}}_{f}^{i,k}\right) \times \left\{ 1-\frac{1}{n_{i}!}\left[ \frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\right] ^{n_{i}}\right\} \nonumber \\&\quad =1- {\mathcal {P}}_{out}^{e2e}\left( CH_{1},n_{i},\omega _{L},P_{i}^{k}\right) \end{aligned}$$
(39)

Taking \(\log\) in both sides,

$$\begin{aligned} \sum \limits _{i=1}^{L} \log \left[ a_{i}^{k} {\mathcal {P}}\left( {\mathcal {H}}_{0}\right) \left( 1-{\mathcal {P}}_{f}^{i,k}\right) \times \left\{ 1-\frac{1}{n_{i}!}\left[ \frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\right] ^{n_{i}}\right\} \right] \nonumber \\ =\log \left[ 1- {\mathcal {P}}_{out}^{e2e}\left( CH_{1},n_{i},\omega _{L},P_{i}^{k}\right) \right] \end{aligned}$$
(40)

As we assumed in the paper \(\frac{P_{i}^{k}d_{i,j}^{-\alpha }}{N_{0}}>> \gamma _{th}^{SU}\). Therefore, \(\log \left( 1-\frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\right) \approx -\frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\) and \(\frac{1}{n_{i}!} < 1\) for any real number.

$$\begin{aligned}&\sum \limits _{i=1}^{L} \log \left\{ a_{i}^{k} {\mathcal {P}} \left( {\mathcal {H}}_{0}\right) \left( 1-{\mathcal {P}}_{f}^{i,k}\right) \right\} - \sum \limits _{i=1}^{L} \frac{1}{n_{i}!}\left\{ \frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\right\} ^{n_{i}} \nonumber \\&\quad =\log \left[ 1- {\mathcal {P}}_{out}^{e2e}\left( CH_{1},n_{i},\omega _{L},P_{i}^{k}\right) \right] \end{aligned}$$
(41)
$$\begin{aligned}&\mathcal {P}_{out}^{e2e}\left( CH_{1},n_{i},\omega _{L},P_{i}^{k}\right) =1-exp \left[ \sum \limits _{i=1}^{L}\log \left\{ a_{i}^{k} {\mathcal {P}}\left( {\mathcal {H}}_{0}\right) \left( 1-{\mathcal {P}}_{f}^{i,k}\right) \right\} \right. \nonumber \\&\quad \left. -\sum \limits _{i=1}^{L}\frac{1}{n_{i}!}\left\{ \frac{\gamma _{th}^{SU} N_{0}d_{i,i+1}^{\alpha }}{P_{i}^{k}}\right\} ^{n_{i}}\right] \end{aligned}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S., Acharya, T. Spectrum-aware outage minimizing cooperative routing in cognitive radio sensor networks. Wireless Netw 26, 1069–1084 (2020). https://doi.org/10.1007/s11276-018-1844-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1844-7

Keywords