Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Inner and outer bounding capacity region for multiple-access relay channel with non-causal side information at one encoder

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we analyze inner and outer bounding capacity region of two-user multiple-access relay channel (MARC) with side information (SI) non-causally known at one encoder in different scenarios. First, we obtain a general capacity inner bound including various previous results as its special cases, where, the informed encoder transmits two-layer individual description of side information to the relay and destination, and block Markov, superposition, Marton and Gel’fand-Pinsker coding at the encoders and sliding-window decoding at the receiver are exploited. This individual side information can be considered as the partial SI at the relay and destination, which can potentially increase the transmission rates, especially for the uninformed encoder. Second, to show practical importance of the obtained inner bound, we extend it to the Gaussian version, which can be used in studying the coverage region and energy efficiency. Third, we study outer bounding the capacity region, aiming at outer bounds less than cut set bounds, by considering a general MARC with partial decode and forward (PDF) strategy at the relay. Finally, the obtained Gaussian inner bound is evaluated numerically, and we showed that our capacity inner bound results in more sum-rate in comparison with the previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Shannon, C. E. (1958). Channels with side information at the transmitter. IBMJ Research and Development, 2(4), 289–293.

    Article  MathSciNet  Google Scholar 

  2. Kuznetsov, N. V., & Tsybakov, B. S. (1974). Coding in memories with defective cells. Problemy Peredachi Informatsii, 10(2), 52–60.

    MathSciNet  MATH  Google Scholar 

  3. Gel’fand, S. I., & Pinsker, M. S. (1980). Coding for channel with random parameters. Problems of Control and Information Theory, 9(1), 19–31.

  4. Costa, M. (1983). Writing on dirty paper (corresp.). IEEE Transactions on Information Theory, 29(3), 439–441.

    Article  MathSciNet  Google Scholar 

  5. Anzabi-Nezhad, N. S., Hodtani, G. A., & Molavi Kakhki, M. (2013). Information theoretic exemplification of the receiver re-cognition and a more general version for the costa theorem. IEEE Communications Letters, 17(1), 107–110.

    Article  Google Scholar 

  6. Das, A., & Narayan, P. (2002). Capacities of time-varying multiple access channels with side information. IEEE Transactions on Information Theory, 48(1), 4–25.

    Article  MathSciNet  Google Scholar 

  7. Jafar, S. A. (2006). Capacity with casual and non-casual side information-aunified view. IEEE Transactions on Information Theory, 52(12), 5468–5474.

    Article  MathSciNet  Google Scholar 

  8. Philosof, T., Zamir, R., & Erez, U. (2008). Technical report: Achievable rates for the MAC with correlated channel-state information. ArXiv, abs/0812.4803.

  9. Zamir, R., Shamai, S., & Erez, U. (2002). Nested linear/lattice codes for structured multiterminal binning. IEEE Transactions on Information Theory, 48(6), 1250–1276.

    Article  MathSciNet  Google Scholar 

  10. Philosof, T., & Zamir, R. (2009). On the loss of single-letter characterization: The dirty multiple access channel. IEEE Transactions on Information Theory, 55(6), 2442–2454.

    Article  MathSciNet  Google Scholar 

  11. Philosof, T., Zamir, R., Erez, U., & Khisti, A. J. (2011). Lattice strategies for the dirty multiple access channel. IEEE Transactions on Information Theory, 57(8), 5006–5035.

    Article  MathSciNet  Google Scholar 

  12. Erez, U., Shamai, S., & Zamir, R. (2005). Capacity and lattice strategies for canceling known interference. IEEE Transactions on Information Theory, 51(11), 3820–3833.

    Article  MathSciNet  Google Scholar 

  13. Kotagiri, S. P., & Laneman, J. N. (2008). Multiaccess channels with state known to some encoders and independent messages. EURASIP Journal on Wireless Communications and Networking, 2008(1), 450680.

    Article  Google Scholar 

  14. Kotagiri, S. P., & Laneman, J. N. (2007). Multiaccess channels with state known to one encoder: A case of degraded message sets. In IEEE international symposium on information theory (ISIT) (pp. 1566–1570), Nice.

  15. Zaidi, A., Kotagiri, S. P., laneman, J. N., & Vandendorpe, L. (2009). Multiaccess channels with state known to one encoder: another case of degraded message stes. In IEEE international symposium on information theory (ISIT) (pp. 2376–2380), Seoul.

  16. Cemal, Y., & Steinberg, Y. (2005). The multiple access channel with partial state information at the encoders. IEEE Transactions on Information Theory, 51(11), 3392–4003.

    Article  MathSciNet  Google Scholar 

  17. Bahmani, E., & Hodtani, G. A. (2012). Achievable rate regions for the dirty multiple access channel with partial side information at the transmitters. In IEEE international symposium on information theory (ISIT) (pp. 1702–1706), Cambridge, MA.

  18. Bahmani, E., & Hodtani, G. A. (2013). Capacity for the doubly dirty multiple access channel with partial side information at the transmitters. IET Communications, 7(11), 1099–1108.

    Article  Google Scholar 

  19. Bahmani, E., & Hodtani, G. A. (2015). Achievable rate regions for a three-user multiple access channel with partial side information. Transactions on Emerging Telecommunications Technologies, 26(4), 616–629.

    Article  Google Scholar 

  20. Monemzadeh, M., Bahmani, E., Hodtani, G. A., & Seyedin, S. A. (2014). Gaussian doubly dirty compound multiple-access channel with partial side information at the transmitters. IET Communications, 8(12), 2181–2192.

    Article  Google Scholar 

  21. Van der Meulen, E. C. (1971). Three-terminal communication. Advances in Applied Probability, 3(1), 120–154.

    Article  MathSciNet  Google Scholar 

  22. Cover, T. M., & Gamal, A. E. (1979). Capacity theorems for relay channel. IEEE Transactions on Information Theory, 25(5), 572–584.

    Article  MathSciNet  Google Scholar 

  23. Gamal, A. E., & Zahedi, S. (2005). Capacity of A class of relay channels with orthogonal components. IEEE Transactions on Information Theory, 51(5), 1815–1817.

    Article  MathSciNet  Google Scholar 

  24. Hodtani, G. A., & Aref, M. (2009). Unified approach to the capacity evaluation of the relay channel. IET Communications, 3(7), 1208–1215.

    Article  MathSciNet  Google Scholar 

  25. Host-Madsen, A., & Zhang, J. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51(6), 2020–2040.

    Article  MathSciNet  Google Scholar 

  26. Braginskiy, E., Steiner, A., & Shitz, S. S. (2012). Oblivious sequential decode and forward cooperative strategies for the wireless relay channel. IEEE Transactions on Communications, 60(11), 3228–3238.

    Article  Google Scholar 

  27. Zhang, L., Jiang, J., Goldsmith, A. J., & Cui, S. (2011). Study of Gaussian relay channels with correlated noises. IEEE Transactions on Communications, 59(3), 863–876.

    Article  Google Scholar 

  28. Aggarwal, V., Bennatan, A., & Calderbank, A. R. (2009). On maximizing coverage in Gaussian relay channels. IEEE Transactions on Information Theory, 55(6), 2518–2536.

    Article  MathSciNet  Google Scholar 

  29. Alizadeh, A., & Hodtani, G. A. (2012). Analysis of coverage region for MIMO relay channel. In International symposium on wireless communication systems (pp. 626–630).

  30. Zaidi, A., Shamai, S. S., Piantanida, P., & Vandendorpe, L. (2013). Bounds on the capacity of the relay channel with noncausal state at the source. IEEE Transactions on Information Theory, 59(5), 2639–2672.

    Article  MathSciNet  Google Scholar 

  31. Zaidi, A., Kotagiri, S. P., & Laneman, J. N. (2010). Cooperative relaying with state available non-causally at the relay. IEEE Transactions on Information Theory, 56(5), 2272–2298.

    Article  MathSciNet  Google Scholar 

  32. Shen, J., Wang, D.-J., Wang, O., & Zhang, G. (2017). Decode-forward relaying with state available noncausally at the relay. In International conference on information technology and management engineering (pp. 258–269), Beijing, China.

  33. Kramer, G., & Van Wijngaarden, A. J. (2000). On the white gaussian multiple-access relay channel. In IEEE international symposium on information theory (p. 40). Sorrento, Italy.

  34. Kramer, G., Gupta, P., & Gastpar, M. (2004). Information-theoretic multihopping for relay networks. In International Zurich seminar on communications (pp. 192–195). Zurich, Switzerland.

  35. Sankaranarayanan, L., Kramer, G., & Mandayam, N. (2004). Hierarchical sensor networks: capacity bounds and cooperative strategies using the multiple-access relay channel model. In First annual IEEE communications society conference on sensor and Ad Hoc communications and networks (pp. 191–199), Santa Clara, CA, USA.

  36. Sankaranarayanan, L., Kramer, G., & Mandayam, N. (2007). Offset encoding for multipleaccess relay channels. IEEE Transactions on Information Theory, 53(10), 3814–3821.

    Article  MathSciNet  Google Scholar 

  37. Tandon, R., & Poor, H. V. (2011). On the capacity region of multiple-access relay channels. In Annual conference on information sciences and systems (pp. 1–5), Baltimore, MD.

  38. Sankar, L., Mandayam, N. B., & Poor, H. V. (2009). On the sum-capacity of degraded Gaussian multiple-access relay channels. IEEE Transactions on Information Theory, 55(12), 5394–5411.

    Article  MathSciNet  Google Scholar 

  39. Sahebalam, A., Osmani, M., & Hodtani, G. A. (2013). General and new inner bound for multiple-access relay channel and two certain capacity theorems. IET Communications, 7(13), 1348–1359.

    Article  Google Scholar 

  40. Osmani, M., & Hodtani, G. A. (2014). On multiple-access relay channel with common message. Transactions on Emerging Telecommunications Technologies, 27(8), 1030–1043.

    Article  Google Scholar 

  41. Osmani, M., Sahebalam, A., & Hodtani, G. A. (2013). Multiple-access relay channels with non-causal side information at the relay. In IEEE international symposium on information theory (pp. 2631–2635). Istanbul.

  42. Etminan, J., Mohanna, F., & Hodtani, G. A. (2018). A new general inner bound for multiple-access relay channel with non-causal side information at one encoder and common message. In Iran workshop on communication and information theory, Tehran, Iran, 2018.

  43. Etminan, J., Mohanna, F., & Hodtani, G. A. (2021). Effects of relay and side information at one encoder on the coverage regions in Gaussian multiple-access channel. Transactions on Emerging Telecommunications Technologies, 2021, e4313. https://doi.org/10.1002/ett.4313.

    Article  Google Scholar 

  44. Etminan, J., Mohanna, F., & Hodtani, G. A. (2021). A general achievable rate region and two certain capacity regions for slepian-wolf multiple-access relay channel with non-causal side information at one encoder. IET Communications, 15(4), 497–512.

    Article  Google Scholar 

  45. Permuter, H. H., Shamai, S., & Somekh-Baruch, A. (2011). Message and state cooperation in multiple access channels. IEEE Transactions on Information Theory, 57(10), 6379–6396.

    Article  MathSciNet  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farahnaz Mohanna.

Ethics declarations

Conflict of interest

All authors have declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

In details for Appendix B, Appendix C and Appendix D:

  1. a

    : follows since Fano’s inequality.

  2. b

    : follows since Csiszar-Korners’s sum identity.

  3. c

    : follows since \(X_{Ri}-W_0W_1^{\prime }W_2^{\prime }S_{i+1}^nY_{D}^{i-1}-W_1^{\prime \prime } W_2^{\prime \prime }S_{i}\).

  4. d

    : follows since \(W_1^{\prime \prime }-W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }S_{i+1}^n-S_{i}\).

  5. e

    : follows since \(W_1^{\prime }-W_0W_2^{\prime }S_{i+1}^n-S_{i}\).

  6. f

    : follows since \(X_{Ri}=f\left( Y_{R}^{i-1}\right) \)

  7. g

    : follows since \(H\left( S_{i}\right) =H\left( S_i|S_{i+1}^n\right) \).

  8. h

    : follows since \(X_{1i}=f\left( W_0W_1^{\prime }W_1^{\prime \prime }\right) \).

  9. k

    : follows since \(W_1^{\prime \prime }-W_0W_1^{\prime }W_2^{\prime }Y_{D}^{i-1}S_{i+1}^n-S_{i}\).

  10. l

    : follows since the channel is degraded.

  11. n

    : follows since \(W_1^{\prime }W_1^{\prime \prime }-X_{1i}-Y_{Ri}Y_{Di}\).

  12. t

    : follows since \(X_{0i}=f\left( W_0\right) \), \(X_{1Di}=f\left( W_1\right) \) and \(X_{2Di}=f\left( W_2,S^n\right) \).

  13. q

    : follows since \(Y_{Ri}-X_{0i}S_iX_{Ri}-X_{1Di}X_{2Di}\) and \(Y_{Di}-X_{1Di}X_{2Di}S_iX_{Ri}-X_{0i}Y_{Ri}\).

  14. r

    : follows since \(Y_R^{i-1}X_{Ri}-Y_D^nW_0W_1W_2S^{i-1}-S_i\)

A Proof of the Theorem 2

By using the channel inputs distribution and auxiliary random variables defined in Sect. 3.2 we extended the results of the remark 1 to Gaussian continuous channel, Hence:

$$\begin{aligned}&h\left( Y_R|V_1V_2X_1Z_2{\hat{S}}_R\right) =h\left( {\tilde{Y}}_R|V_2Z_2{\hat{S}}_R\right) \\&\quad =\frac{1}{2}\log _2\left( 2\pi e E\left[ \left( {\tilde{Y}}_R-E\left( {\tilde{Y}}_R|V_2Z_2{\hat{S}}_R\right) \right) ^2\right] \right) \end{aligned}$$

Where, we define \({\tilde{Y}}_R=\frac{X_2}{d_{2R}^{\frac{\alpha }{2}}}+\frac{S}{d_{SR}^{\frac{\alpha }{2}}}+Z_R\) and \({\tilde{Y}}_D=\frac{X_2}{d_{2D}^{\frac{\alpha }{2}}}+\frac{V_{R_2}}{d_{RD}^{\frac{\alpha }{2}}}+\frac{S}{d_{SD}^{\frac{\alpha }{2}}}+Z_D\) and by using MMSE estimator it can be shown that:

$$\begin{aligned} E\left( {\tilde{Y}}_R|V_2Z_2{\hat{S}}_R\right)&=\frac{\frac{{\bar{\beta }}P_2\left( 1-\rho _{2R}^2\right) }{d_{2R}^{\frac{\alpha }{2}}}+\frac{\eta _2 D}{d_{SR}^{\frac{\alpha }{2}}}}{{\bar{\beta }}P_2\left( 1-\rho _{2R}^2\right) +\eta _2^2D}Z_2\\&\quad +\sqrt{\frac{{\bar{\beta }}P_2}{{\bar{\gamma }}P_R d_{2R}^{\alpha }}}V_2+\frac{{\hat{S}}_R}{d_{SR}^{\frac{\alpha }{2}}} \end{aligned}$$

And consequently, it can be shown that:

$$\begin{aligned}&h\left( Y_R|V_1V_2X_1Z_2{\hat{S}}_R\right) =\frac{1}{2}\log _2\left( 2 \pi e r_3\right) \\&h\left( Y_R|V_1V_2Z_2{\hat{S}}_R\right) =\frac{1}{2}\log _2\left( 2 \pi e \left( \frac{P_1\left( 1-\rho _{1R}^2\right) }{d_{1R}^{\alpha }}+r_3\right) \right) \\&h\left( Y_R|V_1V_2X_1{\hat{S}}_R\right) =\frac{1}{2}\log _2\left( 2 \pi e r_1\right) \\&h\left( Y_R|V_1V_2 {\hat{S}}_R\right) =\frac{1}{2}\log _2\left( 2 \pi e r_2\right) \\&h\left( Y_R|V_1V_2X_1Z_2Q_R {\hat{S}}_R\right) =\frac{1}{2}\log _2\left( 2 \pi e r_4\right) \end{aligned}$$

Also, similarly it can be shown that:

$$\begin{aligned}&h\left( Y_D\right) =\frac{1}{2}\log _2\left( 2 \pi e D_1\right) ,h\left( Y_D|V_1\right) =\frac{1}{2}\log _2\left( 2 \pi e D_2\right) \\&h\left( Y_D|V_1V_2\right) =\frac{1}{2}\log _2\left( 2 \pi e D_3\right) \\&h\left( Y_D|V_1V_2X_1\right) =\frac{1}{2}\log _2\left( 2 \pi e D_4\right) \\&h\left( Y_D|V_1V_2X_1Z_2\right) =\frac{1}{2}\log _2\left( 2 \pi e D_5\right) \\&h\left( Y_D|V_1V_2Z_2\right) =\frac{1}{2}\log _2\left( 2 \pi e \left( \frac{P_1 \left( 1-\rho _{1R}^2\right) }{d_{1D}^{\alpha }}+D_5\right) \right) \\&h(Q_R|V_2Z_2{\hat{S}}_R)=\frac{1}{2}\log _2 (2 \pi e (\beta P_2+\frac{\eta _3^2 D {\bar{\beta }}P_2(1-\rho _{2R}^2)}{{\bar{\beta }}P_2(1-\rho _{2R}^2)+\eta _2^2D}))\\&h\left( Q_R|V_2Z_2{\hat{S}}_RS\right) =\frac{1}{2}\log _2\left( 2 \pi e \beta P_2\right) \\&h\left( Z_2|V_2{\hat{S}}_R\right) =\frac{1}{2}\log _2\left( 2 \pi e\left( {\bar{\beta }}P_2 \left( 1-\rho _{2R}^2\right) +\eta _2^2 D\right) \right) \\&h\left( Z_2|V_2 {\hat{S}}_RS\right) =\frac{1}{2}\log _2 \left( 2 \pi e \left( {\bar{\beta }}P_2\left( 1-\rho _{2R}^2\right) \right) \right) \\&h\left( V_2\right) =\frac{1}{2}\log _2 \left( 2 \pi e\left( {\bar{\gamma }}P_R+\eta _1^2\left( Q-D\right) \right) \right) \\&h\left( V_2|{\hat{S}}_R\right) =\frac{1}{2}\log _2\left( 2 \pi e {\bar{\gamma }}P_R\right) \end{aligned}$$

And the proof is completed.

B Proof of Theorem 3

$$\begin{aligned}&nR_0=H\left( W_0\right) \le H\left( W_0W_1^{\prime }W_2^{\prime }\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} I\left( W_0W_1^{\prime }W_2^{\prime };Y_{R}^nY_D^n\right) -I\left( W_0W_1^{\prime }W_2^{\prime };S^n\right) +n\epsilon _n \nonumber \\&\quad \cong \sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime };Y_{Ri}Y_{Di}|Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{f}}\sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_{R}^{i-1}Y_{D}^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. - I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{b}}\sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_{R}^{i-1}Y_{D}^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. - I\left( Y_{R}^{i-1}Y_{D}^{i-1};S_{i}|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{f,g}}\sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_{R}^{i-1}Y_{D}^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. - I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^nY_{R}^{i-1}Y_{D}^{i-1}X_{Ri};S_{i}\right) \right] \nonumber \\&\quad \le \sum _{i=1}^n{\left[ I\left( U_{0i}U_{1i}U_{2i};Y_{Ri}Y_{Di}|Q_{i}X_{Ri}\right) -I\left( U_{2i};S_i|U_{0i}X_{Ri}\right) \right] } \nonumber \\&nR_0=H\left( W_0\right) \le H\left( W_0W_1^{\prime }W_2^{\prime }\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} I\left( W_0W_1^{\prime }W_2^{\prime };Y_D^n\right) -I\left( W_0W_1^{\prime }W_2^{\prime };S^n\right) +n\epsilon _n \nonumber \\&\quad \cong \sum _{i=1}^n{\left[ I\left( W_0W_1^{\prime }W_2^{\prime };Y_{Di}|Y_{D}^{i-1}\right) -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] } \nonumber \\&\quad =\sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Di}|Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. - I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_{D}^{i-1}\right) -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \end{aligned}$$
(95)
$$\begin{aligned}&\quad {\mathop {=}\limits ^{b}}\sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Di}|Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. - I\left( Y_{D}^{i-1};S_{i}|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c,g}}\sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime }Y_{D}^{i-1}X_{Ri}S_{i+1}^n;Y_{Di}\right) \right. \nonumber \\&\qquad \left. - I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^nY_{D}^{i-1}X_{Ri};S_{i}\right) \right] \nonumber \\&\quad \le \sum _{i=1}^n\left[ I\left( W_0W_1^{\prime }W_2^{\prime }Y_{D}^{i-1}X_{Ri}S_{i+1}^n;Y_{Di}\right) \right. \nonumber \\&\qquad \left. - I\left( W_2^{\prime }S_{i+1}^n;S_{i}|W_0Y_{D}^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad =\sum _{i=1}^n{\left[ I\left( U_{0i}U_{1i}U_{2i}X_{Ri};Y_{Di}\right) -I\left( U_{2i};S_i|U_{0i}X_{Ri}\right) \right] } \nonumber \\&nR_{1}=H\left( W_1^{\prime }|W_0W_2^{\prime }\right) +H\left( W_1^{\prime \prime }|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}}I\left( W_1^{\prime };Y_R^nY_D^n|W_0W_2^{\prime }\right) +I\left( W_1^{\prime \prime };Y_D^n|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }\right) \nonumber \\&\qquad +n\epsilon _n\cong \sum _{i=1}^n \left[ I\left( W_1^{\prime };Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }Y_{D}^{i-1}\right) \right] \nonumber \\&\quad = \sum _{i=1}^n \left[ I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime };Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }W_1^{\prime \prime }Y_{D}^{i-1}\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{b}} \sum _{i=1}^n \left[ I\left( Y_{R}^{i-1}Y_{D}^{i-1};S_i|W_0W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime };Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{R}^{i-1}Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }W_1^{\prime \prime }S_{i+1}^n\right) \right] \nonumber \\&\quad \le \sum _{i=1}^n \left[ I\left( W_1^{\prime }Y_{R}^{i-1}Y_{D}^{i-1};S_i|W_0W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime };Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime }Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{R}^{i-1}Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }W_1^{\prime \prime }S_{i+1}^n\right) \right] \end{aligned}$$
(96)
$$\begin{aligned}&\quad {\mathop {\le }\limits ^{d,e,f}} \sum _{i=1}^n \left[ I\left( W_1^{\prime };Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime };X_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c}} \sum _{i=1}^n \left[ I\left( W_1^{\prime };Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( X_{1i}W_1^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }X_{Ri}Y_{D}^{i-1}S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{n}} \sum _{i=1}^n \left[ I\left( W_1^{\prime };Y_{Ri}Y_{Di}|W_0W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( X_{1i};Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_2^{\prime \prime }X_{Ri}Y_{D}^{i-1}S_{i+1}^n\right) \right] \nonumber \\&\quad = \sum _{i=1}^n \left[ I\left( U_{1i};Y_{Ri}Y_{Di}|U_{0i}U_{2i}X_{Ri}Q_{i}\right) \right. \nonumber \\&\qquad \left. +I\left( X_{1i};Y_{Di}|U_{0i}U_{1i}U_{2i}X_{Ri}V_{i}\right) \right] \nonumber \\&nR_{2}=H\left( W_2^{\prime }|W_0W_1^{\prime }\right) +H\left( W_2^{\prime \prime }|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}}I\left( W_2^{\prime };Y_R^nY_D^n|W_0W_1^{\prime }\right) +I\left( W_2^{\prime \prime };Y_D^n|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }\right) \nonumber \\&\qquad -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime };S^n\right) +n\epsilon _n \nonumber \\&\quad \cong \sum _{i=1}^n \left[ I\left( W_2^{\prime };Y_{Ri}Y_{Di}|W_0W_1^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad =\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime }S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{b}}\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{R}^{i-1}Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{f,g}}\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime }Y_{D}^{i-1};S_{i}|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime }S_{i+1}^nY_{D}^{i-1};S_i\right) \right] \end{aligned}$$
(97)
$$\begin{aligned}&\quad {\mathop {\le }\limits ^{c,k,h}}\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime };X_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }X_{1i}Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime }S_{i+1}^nY_{D}^{i-1}X_{Ri};S_i\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c}}\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }Y_{R}^{i-1}Y_{D}^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime }W_2^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }X_{1i}Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_2^{\prime }W_2^{\prime \prime }S_{i+1}^n;S_i|W_0Y_{D}^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{n}}\sum _{i=1}^n\left[ I\left( U_{2i};Y_{Ri}Y_{Di}|U_{0i}U_{1i}Q_iX_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( V_i;Y_{Di}|U_{0i}U_{1i}U_{2i}X_{1i}X_{Ri}\right) -I\left( U_{2i}V_{i};S_i|U_{0i}X_{Ri}\right) \right] \end{aligned}$$
(98)
$$\begin{aligned}&nR_{2}=H\left( W_2^{\prime }|W_0W_1^{\prime }\right) +H\left( W_2^{\prime \prime }|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} \sum _{i=1}^n \left[ I\left( W_2^{\prime };Y_{Di}|W_0W_1^{\prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad =\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime }S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{b,g}}\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^nX_{Ri};Y_{Di}|W_0W_1^{\prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime }Y_{D}^{i-1};S_{i}|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime }S_{i+1}^nY_{D}^{i-1};S_i\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c,k,h}}\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^nX_{Ri};Y_{Di}|W_0W_1^{\prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2^{\prime \prime };X_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }X_{1i}Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_1^{\prime \prime }W_2^{\prime \prime }S_{i+1}^nY_{D}^{i-1}X_{Ri};S_i\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c}}\sum _{i=1}^n\left[ I\left( W_2^{\prime }S_{i+1}^nX_{Ri};Y_{Di}|W_0W_1^{\prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime }W_2^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }X_{1i}Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_2^{\prime }W_2^{\prime \prime }S_{i+1}^n;S_i|W_0Y_{D}^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{n}}\sum _{i=1}^n\left[ I\left( U_{2i}X_{Ri};Y_{Di}|U_{0i}U_{1i}\right) -I\left( U_{2i}V_{i};S_i|U_{0i}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( V_i;Y_{Di}|U_{0i}U_{1i}U_{2i}X_{1i}X_{Ri}\right) \right] \end{aligned}$$
(99)
$$\begin{aligned}&n\left( R_0+R_1\right) =H\left( W_0W_1^{\prime }\right) +H\left( W_{1}^{\prime \prime }|W_0W_1^{\prime }\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} \sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime };Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_{1}^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}\right) -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad = \sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_{1}^{\prime \prime }S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. - I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_{1}^{\prime \prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{b,f}}\sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_{1}^{\prime \prime };X_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. - I\left( Y_R^{i-1}Y_D^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_{i}|W_0W_1^{\prime }W_{1}^{\prime \prime }W_2^{\prime }W_{2}^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c}}\sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1^{\prime \prime }Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_{1}^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_{i}|W_0W_1^{\prime }W_{1}^{\prime \prime }W_2^{\prime }W_{2}^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }Y_R^{i-1}Y_D^{i-1};S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c,g,f}}\sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( X_{1i}W_{1}^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }Y_R^{i-1}X_{Ri}Y_D^{i-1}S_{i+1}^n;S_i\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{n}}\sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( X_{1i};Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_2^{\prime }S_{i+1}^n;S_i|W_0Y_D^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad = \sum _{i=1}^n \left[ I\left( U_{0i}U_{1i}U_{2i};Y_{Ri}Y_{Di}|Q_iX_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( X_{1i};Y_{Di}|U_{0i}U_{1i}U_{2i}X_{Ri}V_i\right) -I\left( U_{2i};S_i|U_{0i}X_{Ri}\right) \right] \nonumber \\&n\left( R_0+R_2\right) =H\left( W_0W_2^{\prime }\right) +H\left( W_{2}^{\prime \prime }|W_0W_2^{\prime }\right) \nonumber \\&\quad \le H\left( W_0W_1^{\prime }W_2^{\prime }\right) +H\left( W_{2}^{\prime \prime }|W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} \sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime };Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_{2}^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }W_{2}^{\prime \prime };S_i|S_{i+1}^n\right) \right] \end{aligned}$$
(100)
$$\begin{aligned}&\quad = \sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. +I\left( W_{2}^{\prime \prime }S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. - I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Di}|W_0W_1^{\prime }W_{1}^{\prime \prime }W_2^{\prime }W_{2}^{\prime \prime }Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }W_{2}^{\prime \prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{b,f}}\sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_{R}^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_{2}^{\prime \prime };X_{Ri}Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }Y_{D}^{i-1}S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. - I\left( Y_R^{i-1}Y_D^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{D}^{i-1};S_{i}|W_0W_1^{\prime }W_{1}^{\prime \prime }W_2^{\prime }W_{2}^{\prime \prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }W_{2}^{\prime \prime };S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{d,h}}\sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_{R}^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_{1}^{\prime \prime }Y_{D}^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. +I\left( W_{2}^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }Y_{D}^{i-1}S_{i+1}^nX_{Ri}\right) \right. \nonumber \\&\qquad \left. - I\left( Y_D^{i-1};S_i|W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1^{\prime }W_2^{\prime }W_{1}^{\prime \prime }W_{2}^{\prime \prime }Y_{D}^{i-1};S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c,g,k,h}}\sum _{i=1}^{n}\left[ I\left( W_0W_1^{\prime }W_2^{\prime }S_{i+1}^n;Y_{Ri}Y_{Di}|Y_{R}^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_{1}^{\prime \prime }W_{2}^{\prime \prime };Y_{Di}|W_0W_1^{\prime }W_2^{\prime }Y_{D}^{i-1}S_{i+1}^nX_{Ri}X_{1i}\right) \right. \nonumber \\&\qquad \left. -I\left( W_2^{\prime }W_{2}^{\prime \prime }S_{i+1}^n;S_i|W_0Y_{D}^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{n}}\sum _{i=1}^n\left[ I\left( U_{0i}U_{1i}U_{2i};Y_{Ri}Y_{Di}|Q_iX_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( V_i;Y_{Di}|U_{0i}U_{1i}U_{2i}X_{Ri}X_{1i}\right) -I\left( U_{2i}V_i;S_i|U_{0i}X_{Ri}\right) \right] \end{aligned}$$
(101)

For brevity, only some bounds are proved. The other bounds can be done similarly.

C Proof of Theorem 4

$$\begin{aligned}&nR_2=H\left( W_2\right) =H\left( W_2|W_0W_1\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} \sum _{i=1}^n \left[ I\left( W_2;Y_{Ri}Y_{Di}|W_0W_1Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad =\sum _{i=1}^n\left[ I\left( W_2S_{i+1}^nS_i;Y_{Ri}Y_{Di}|W_0W_1Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1W_2Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_{Ri}Y_{Di}|W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{b,f}}\sum _{i=1}^n \left[ I\left( W_2S_{i+1}^nS_i;Y_{Ri}Y_{Di}|W_0W_1Y_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I(Y_R^{i-1}Y_D^{i-1}X_{Ri};S_i|W_0W_1W_2S_{i+1}^n)-I(W_0W_1W_2;S_i|S_{i+1}^n) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_{Ri}Y_{Di}|W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{g}}\sum _{i=1}^n \left[ I\left( W_2S_{i+1}^nS_i;Y_{Ri}|W_0W_1Y_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_2S_{i+1}^nS_i;Y_{Di}|W_0W_1Y_R^{i-1}Y_D^{i-1}Y_{Ri}X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}X_{Ri}Y_{Ri}Y_{Di};S_i\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{l}}\sum _{i=1}^n \left[ I\left( W_2S_{i+1}^nS_iY_R^{i-1};Y_{Ri}|W_0W_1Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}X_{Ri}Y_{Ri}Y_{Di};S_i\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{c,h}}\sum _{i=1}^n \left[ I\left( W_2S_{i+1}^n;Y_{Ri}|W_0W_1Y_D^{i-1}X_{Ri}X_{1i}\right) \right. \nonumber \\&\qquad \left. +I\left( S_i;Y_{Ri}|W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( Y_R^{i-1};Y_{Ri}|W_0W_1W_2S_{i+1}^nS_iY_D^{i-1}X_{Ri}X_{1i}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri};S_i\right) \right. \nonumber \\&\qquad \left. -I\left( Y_{Ri};S_i|W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( Y_R^{i-1}Y_{Di};S_i|W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri}Y_{Ri}\right) \right] \nonumber \\&\quad \le \sum _{i=1}^n \left[ I\left( W_1W_2S_{i+1}^n;Y_{Ri}|W_0Y_D^{i-1}X_{Ri}X_{1i}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1Y_R^{i-1};Y_{Ri}|W_0W_2S_{i+1}^nY_D^{i-1}X_{Ri}X_{1i}S_i\right) \right. \nonumber \\&\qquad \left. -I\left( W_2S_{i+1}^n;S_i|W_0Y_D^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{n}}\sum _{i=1}^n \left[ I\left( U_{2i};Y_{Ri}|U_{0i}X_{1i}X_{Ri}\right) -I\left( U_{2i};S_i|U_{0i}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( Q_i;Y_{Ri}|U_{0i}X_{1i}U_{2i}X_{Ri}S_i\right) \right] \end{aligned}$$
(102)
$$\begin{aligned}&n\left( R_1+R_2\right) =H\left( W_1W_2\right) =H\left( W_1W_2|W_0\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} \sum _{i=1}^n \left[ I\left( W_1W_2;Y_{Ri}Y_{Di}|W_0Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad =\sum _{i=1}^n\left[ I\left( W_1W_2S_{i+1}^nS_i;Y_{Ri}Y_{Di}|W_0Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1W_2Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_{Ri}Y_{Di}|W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{b,f}}\sum _{i=1}^n \left[ I\left( W_1W_2S_{i+1}^nS_i;Y_{Ri}Y_{Di}|W_0Y_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( Y_R^{i-1}Y_D^{i-1}X_{Ri};S_i|W_0W_1W_2S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_{Ri}Y_{Di}|W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&{\mathop {\le }\limits ^{l,g}}\sum _{i=1}^n \left[ I\left( W_1W_2S_{i+1}^nS_iY_R^{i-1};Y_{Ri}|W_0Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \qquad \left. -I\left( W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}X_{Ri}Y_{Ri}Y_{Di};S_i\right) \right] \nonumber \\&{\mathop {\le }\limits ^{c,h}}\sum _{i=1}^n \left[ I\left( X_{1i}W_1W_2S_{i+1}^n;Y_{Ri}|W_0Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \qquad \left. +I\left( Y_R^{i-1};Y_{Ri}|W_0W_1W_2S_{i+1}^nS_iY_D^{i-1}X_{Ri}X_{1i}\right) \right. \nonumber \\&\qquad \qquad \left. -I\left( W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri};S_i\right) \right. \nonumber \\&\qquad \qquad \left. -I\left( Y_R^{i-1}Y_{Di};S_i|W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri}Y_{Ri}\right) \right] \nonumber \\&\le \sum _{i=1}^n \left[ I\left( X_{1i}W_1W_2S_{i+1}^n;Y_{Ri}|W_0Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \qquad \left. +I\left( W_1Y_R^{i-1};Y_{Ri}|W_0W_2S_{i+1}^nY_D^{i-1}X_{Ri}X_{1i}S_i\right) \right. \nonumber \\&\qquad \qquad \left. -I\left( W_2S_{i+1}^n;S_i|W_0Y_D^{i-1}X_{Ri}\right) \right] \nonumber \\&{\mathop {=}\limits ^{n}}\sum _{i=1}^n \left[ I\left( X_{1i}U_{2i};Y_{Ri}|U_{0i}X_{Ri}\right) -I\left( U_{2i};S_i|U_{0i}X_{Ri}\right) \right. \nonumber \\&\qquad \qquad \left. +I\left( Q_i;Y_{Ri}|U_{0i}X_{1i}U_{2i}X_{Ri}S_i\right) \right] \end{aligned}$$
(103)
$$\begin{aligned}&n\left( R_0+R_1+R_2\right) =H\left( W_0W_1W_2\right) \nonumber \\&\quad {\mathop {\le }\limits ^{a}} \sum _{i=1}^n \left[ I\left( W_0W_1W_2;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad =\sum _{i=1}^n\left[ I\left( W_0W_1W_2S_{i+1}^nS_i;Y_{Ri}Y_{Di}|Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_{i+1}^n;Y_{Ri}Y_{Di}|W_0W_1W_2Y_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_{Ri}Y_{Di}|W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{b,f}}\sum _{i=1}^n \left[ I\left( W_0W_1W_2S_{i+1}^nS_iY_R^{i-1}Y_D^{i-1};Y_{Ri}Y_{Di}|X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( Y_R^{i-1}Y_D^{i-1}X_{Ri};S_i|W_0W_1W_2S_{i+1}^n\right) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_{Ri}Y_{Di}|W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2;S_i|S_{i+1}^n\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{g,l}}\sum _{i=1}^n \left[ I\left( W_0W_1W_2S_{i+1}^nS_iY_R^{i-1}Y_D^{i-1};Y_{Ri}|X_{Ri}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2S_{i+1}^nY_R^{i-1}Y_D^{i-1}X_{Ri}Y_{Ri}Y_{Di};S_i\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{c,h}}\sum _{i=1}^n \left[ I\left( X_{1i}W_0W_1W_2S_{i+1}^nY_D^{i-1};Y_{Ri}|X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( Y_R^{i-1};Y_{Ri}|W_0W_1W_2X_{1i}S_{i+1}^nS_iY_D^{i-1}X_{Ri}X_{1i}\right) \right. \nonumber \\&\qquad \left. -I\left( W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri};S_i\right) \right. \nonumber \\&\qquad \left. -I\left( Y_R^{i-1}Y_{Di};S_i|W_0W_1W_2S_{i+1}^nY_D^{i-1}X_{Ri}Y_{Ri}\right) \right] \nonumber \\&\quad \le \sum _{i=1}^n \left[ I\left( X_{1i}W_0W_1W_2S_{i+1}^nY_D^{i-1};Y_{Ri}|X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( W_1Y_R^{i-1};Y_{Ri}|W_0W_2S_{i+1}^nY_D^{i-1}X_{Ri}X_{1i}S_i\right) \right. \nonumber \\&\qquad \left. -I\left( W_2S_{i+1}^n;S_i|W_0Y_D^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad {\mathop {=}\limits ^{n}}\sum _{i=1}^n \left[ I\left( X_{1i}U_{2i}U_{0i};Y_{Ri}|X_{Ri}\right) -I\left( U_{2i};S_i|U_{0i}X_{Ri}\right) \right. \nonumber \\&\qquad \left. +I\left( Q_i;Y_{Ri}|U_{0i}X_{1i}U_{2i}X_{Ri}S_i\right) \right] \end{aligned}$$
(104)

For brevity, only some bounds are proved. The other bounds can be done similarly.

D Proof of Theorem 5

$$\begin{aligned}&n\left( R_1+R_2\right) =H\left( W_1W_2\right) =H\left( W_1W_2|W_0\right) \nonumber \\&\quad \le I\left( W_1W_2;Y_R^nY_D^nS^n|W_0\right) +n\epsilon _n \nonumber \\&\quad \le \sum _{i=1}^n \left[ I\left( W_1W_2;Y_{Ri}Y_{Di}|W_0S^nY_{R}^{i-1}Y_D^{i-1}\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{f,t,q}}\sum _{i=1}^n \left[ I\left( X_{1Di}X_{2Di};Y_{Di}|S_iX_{0i}X_{Ri}\right) \right] \end{aligned}$$
(105)
$$\begin{aligned}&n\left( R_0+R_1+R_2\right) =H\left( W_0W_1W_2\right) \nonumber \\&\quad \le \sum _{i=1}^n \left[ I\left( W_0W_1W_2;Y_{Ri}Y_{Di}|S^nY_{R}^{i-1}Y_D^{i-1}\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{f,t,q}}\sum _{i=1}^n \left[ I\left( X_{0i}X_{1Di}X_{2Di};Y_{Ri}Y_{Di}|S_iX_{Ri}\right) \right] \nonumber \\&\quad =\sum _{i=1}^n \left[ I\left( X_{0i}X_{1Di}X_{2Di};Y_{Ri}|S_iX_{Ri}\right) \right. \nonumber \\&\qquad \left. + I\left( X_{0i}X_{1Di}X_{2Di};Y_{Di}|S_iX_{Ri}Y_{Ri}\right) \right] \\&\quad {\mathop {\le }\limits ^{q}}\sum _{i=1}^n \left[ I\left( X_{0i};Y_{Ri}|S_i X_{Ri}\right) +I\left( X_{1Di}X_{2Di};Y_{Di}|S_iX_{Ri}\right) \right] \nonumber \end{aligned}$$
(106)
$$\begin{aligned}&n\left( R_0+R_1+R_2\right) =H\left( W_0W_1W_2\right) \le I\left( W_0W_1W_2;Y_D^n\right) \nonumber \\&\qquad +n\epsilon _n=I\left( W_0W_1W_2S^n;Y_D^n\right) -I\left( S^n;Y_D^n|W_0W_1W_2\right) \nonumber \\&\quad =\sum _{i=1}^n \left[ I\left( W_0W_1W_2S^n;Y_{Di}|Y_{D}^{i-1}\right) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_D^n|W_0W_1W_2S^{i-1}\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{r}}\sum _{i=1}^n \left[ I\left( W_0W_1W_2S^nY_{D}^{i-1}X_{1Di}X_{2Di}X_{Ri};Y_{Di}\right) \right. \nonumber \\&\qquad \left. -I\left( S_i;Y_D^nW_0W_1W_2S^{i-1}Y_{R}^{i-1}X_{Ri}\right) \right] \nonumber \\&\quad {\mathop {\le }\limits ^{q}}\sum _{i=1}^n \left[ I\left( X_{Ri};Y_{Di}\right) +I\left( X_{1Di}X_{2Di};Y_{Di}|X_{Ri}S_i\right) \right] \end{aligned}$$
(107)

For brevity, only some bounds are proved. The other bounds can be done similarly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etminan, J., Mohanna, F. & Abed Hodtani, G. Inner and outer bounding capacity region for multiple-access relay channel with non-causal side information at one encoder. Wireless Netw 28, 85–106 (2022). https://doi.org/10.1007/s11276-021-02815-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02815-8

Keywords