Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Cloud Computing-aided Multi-type Data Fusion with Correlation for Education

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As one of the major constitutes of human society, education has been continuously producing a huge amount of data and become an important of sources of big data. Deeply mining and analyzing these big education data are of practical significance for optimizing education resource deployment and improving education quality. However, the big education data are often of diverse types and from multiple parties, which raises a big challenge for accurate and reasonable educational data fusion especially when the educational data are correlated with each other. In view of this challenge, we put forward a novel cloud computing-aided multi-type data fusion approach considering data correlation in education, to accommodate the big volume, diverse types and correlation of educational data. In concrete, the data fusion operation is mainly based on the Mahalanobis distances which can overcome the data diversity in multiple-dimensional data fusion for education. Afterwards, we provide a case study to show the concrete steps of our proposal. At last, a set of experiments are deployed to validate the feasibility of our proposal in this paper. Experimental results prove the effectiveness and efficiency of our approach in dealing with multi-type data fusion with correlation in education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.-S. K. Pathan, Z. M. Fadlullah, S. Choudhury, M. Guerroumi, Internet of things for smart living, Wireless Networks 27 (2021) 4293–4295. DOI: 10.1007/s11276-019-01970-3.

    Article  Google Scholar 

  2. Q. Wang, Enterprise human resource management system monitoring based on embedded system and 5g big data platform, Wireless Networks 27 (2021) 1–1. DOI: 10.1007/s11276-021-02719-7.

    Article  Google Scholar 

  3. W. Wu, S. Ma, Y. Su, C.-H. Wu, Double-layer learning, leaders’ forgetting, and knowledge performance in online work community organizations, Journal of Organizational and End User Computing 33 (1) (2021) 92–117. DOI: 10.4018/JOEUC.2021010105.

    Article  Google Scholar 

  4. Y. Huo, J. Fan, Y. Wen, R. Li, A cross-layer cooperative jamming scheme for social internet of things, Tsinghua Science and Technology 26 (4) (2021) 523–535. https://doi.org/10.26599/TST.2020.9010020.

    Article  Google Scholar 

  5. Liu, H., Kou, H., Yan, C., & Qi, L. Link prediction in paper citation network to construct paper correlation graph, EURASIP Journal on Wireless Communications and Networking https://doi.org/10.1186/s13677-020-00217-3.

  6. X. Zheng, Z. Cai, Privacy-preserved data sharing towards multiple parties in industrial iots, IEEE Journal on Selected Areas in Communications 38 (5) (2020) 968–979. DOI: 10.1109/JSAC.2020.2980802.

    Article  Google Scholar 

  7. Zhang, W., Li, Z., & Chen, X. (2021). , Quality-aware user recruitment based on federated learning in mobile crowd sensing,. Tsinghua Science and Technology,26(6), 869–877.

    Article  Google Scholar 

  8. Z. Cai, Z. He, X. Guan, Y. Li, Collective data-sanitization for preventing sensitive information inference attacks in social networks, IEEE Transactions on Dependable and Secure Computing 15 (4) (2018) 577–590. DOI: 10.1109/TDSC.2016.2613521.

    Article  Google Scholar 

  9. Kou, H., Liu, H., Duan, Y., Gong, W., Xu, Y., Xu, X., & Qi, L. (2021). Building trust/distrust relationships on signed social service network through privacy-aware link prediction process. Applied Soft Computing,100, 106942. https://doi.org/10.1016/j.asoc.2020.106942

    Article  Google Scholar 

  10. N. Bhardwaj, P. Sharma, An advanced uncertainty measure using fuzzy soft sets: Application to decision-making problems, Big Data Mining and Analytics 4 (2) (2021) 94–103. https://doi.org/10.26599/BDMA.2020.9020020.

    Article  Google Scholar 

  11. Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, Y. Yang, A game-theoretical approach for user allocation in edge computing environment, IEEE Transactions on Parallel and Distributed Systems 31 (3) (2020) 515–529. DOI: 10.1109/TPDS.2019.2938944.

    Article  Google Scholar 

  12. Qi, L., He, Q., Chen, F., Zhang, X., Dou, W., & Ni, Q. Data-driven web apis recommendation for building web applications, IEEE Transactions on Big Data (2020). https://doi.org/10.1109/TBDATA.2020.2975587.

    Article  Google Scholar 

  13. Z. Cai, X. Zheng, A private and efficient mechanism for data uploading in smart cyber-physical systems, IEEE Transactions on Network Science and Engineering 7 (2) (2020) 766–775. DOI: 10.1109/TNSE.2018.2830307.

    Article  MathSciNet  Google Scholar 

  14. F. Wang, M. Zhu, M. Wang, M. R. Khosravi, Q. Ni, S. Yu, L. Qi, 6g-enabled short-term forecasting for large-scale traffic flow in massive iot based on time-aware locality-sensitive hashing, IEEE Internet of Things Journal 8 (7) (2021) 5321–5331. DOI: 10.1109/JIOT.2020.3037669.

    Article  Google Scholar 

  15. He, Q., Wang, C., Cui, G., Li, B., Zhou, R., Zhou, Q., Xiang, Y., Jin, H., & Yang, Y. A game-theoretical approach for mitigatingedge ddos attack, IEEE Transactions on Dependable and Secure Computing (2021). https://doi.org/10.1109/TDSC.2021.3055559.

    Article  Google Scholar 

  16. He, Y., Zhang, Y., Qi, L., Yan, D., & He, Q. (2021). Outer product enhanced heterogeneous information network embedding for recommendation. Expert Systems with Applications, 169,. https://doi.org/10.1016/j.eswa.2020.114359.

  17. Xu, X., Fang, Z., Qi, L., Zhang, X., He, Q., & Zhou, X.Tripres: Traffic flow prediction driven resource reservation for multimedia iov with edge computing, ACM Trans. Multimedia Comput. Commun. Appl. 17 (2). https://doi.org/10.1145/3401979.

  18. W. Wang, Z. Wang, Z. Zhou, H. Deng, W. Zhao, C. Wang, Y. Guo, Anomaly detection of industrial control systems based on transfer learning, Tsinghua Science and Technology 26 (6) (2021) 821–832. https://doi.org/10.26599/TST.2020.9010041.

    Article  Google Scholar 

  19. Cai, Z., He, Z.Trading private range counting over big iot data, In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, pp. 144–153. https://doi.org/10.1109/ICDCS.2019.00023.

  20. Y. Liu, A. Pei, F. Wang, Y. Yang, X. Zhang, H. Wang, H. Dai, L. Qi, R. Ma, An attention-based category-aware gru model for the next poi recommendation, International Journal of Intelligent Systems 36 (7) (2021) 3174–3189. doi: 10.1002/int.22412.

    Article  Google Scholar 

  21. M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, K. Sadatdiynov, A survey of data partitioning and sampling methods to support big data analysis, Big Data Mining and Analytics 3 (2) (2020) 85–101. https://doi.org/10.26599/BDMA.2019.9020015.

    Article  Google Scholar 

  22. X. Xu, R. Mo, X. Yin, M. R. Khosravi, F. Aghaei, V. Chang, G. Li, Pdm: Privacy-aware deployment of machine-learning applications for industrial cyber-physical cloud systems, IEEE Transactions on Industrial Informatics 17 (8) (2021) 5819–5828. DOI: https://doi.org/10.1109/TII.2020.3031440.

    Article  Google Scholar 

  23. Xu, Y., Zhang, C., Wang, G., Qin, Z., & Zeng, Q.A blockchain-enabled deduplicatable data auditing mechanism for network storage services, IEEE Transactions on Emerging Topics in Computing https://doi.org/10.1109/TETC.2020.3005610.

  24. Wang, F., Zhu, H., Srivastava, G., Li, S., Khosravi, M. R., & Qi, L.Robust collaborative filtering recommendation with user-item-trust records, IEEE Transactions on Computational Social Systems (2021) https://doi.org/10.1109/TCSS.2021.3064213.

    Article  Google Scholar 

  25. P. Nitu, J. Coelho, P. Madiraju, Improvising personalized travel recommendation system with recency effects, Big Data Mining and Analytics 4 (3) (2021) 139–154. https://doi.org/10.26599/BDMA.2020.9020026.

    Article  Google Scholar 

  26. Xu, X., Li, H., Xu, W., Liu, Z., Yao, L., Dai, F. Artificial intelligence for edge service optimization in internet of vehicles: A survey, Tsinghua Science and Technology https://doi.org/10.26599/TST.2020.901

  27. Wang, L., Zhang, X., Wang, R., Yan, C., Kou, H., & Qi, L. (2020). Diversified service recommendation with high accuracy and efficiency. Knowledge-Based Systems,204, 106196. https://doi.org/10.1016/j.knosys.2020.106196

    Article  Google Scholar 

  28. Y. Bie, Y. Yang, A multitask multiview neural network for end-to-end aspect-based sentiment analysis, Big Data Mining and Analytics 4 (3) (2021) 195–207. https://doi.org/10.26599/BDMA.2021.9020003.

    Article  Google Scholar 

  29. J. Cai, Z. Huang, L. Liao, J. Luo, W.-X. Liu, Appm: Adaptive parallel processing mechanism for service function chains, IEEE Transactions on Network and Service Management 18 (2) (2021) 1540–1555. DOI: 10.1109/TNSM.2021.3052223.

    Article  Google Scholar 

  30. Q. Liu, P. Hou, G. Wang, T. Peng, S. Zhang, Intelligent route planning on large road networks with efficiency and privacy, Journal of Parallel and Distributed Computing 133 (2019) 93–96. DOI: 10.1016/j.jpdc.2019.06.012.

    Article  Google Scholar 

  31. J. Li, T. Cai, K. Deng, X. Wang, T. Sellis, F. Xia, Community-diversified influence maximization in social networks, Information Systems 92 (2020) 1–12. DOI: 10.1016/j.is.2020.101522.

    Article  Google Scholar 

  32. W. Zhang, Z. Hou, X. Wang, Z. Xu, X. Liu, F.-Y. Wang, Parallel-data-based social evolution modeling, Tsinghua Science and Technology 26 (6) (2021) 878–885. https://doi.org/10.26599/TST.2020.9010052.

    Article  Google Scholar 

  33. Q. Hou, M. Han, Z. Cai, Survey on data analysis in social media: A practical application aspect, Big Data Mining and Analytics 3 (4) (2020) 259–279. https://doi.org/10.26599/BDMA.2020.9020006.

    Article  Google Scholar 

  34. Xu, Y., Qi, L., Dou, W., & Yu, J. (2017). Privacy-preserving and scalable service recommendation based on simhash in a distributed cloud environment. Complexity. https://doi.org/10.1155/2017/3437854

    Article  Google Scholar 

  35. J. Luo, J. Li, L. Jiao, J. Cai, On the effective parallelization and near-optimal deployment of service function chains, IEEE Transactions on Parallel and Distributed Systems 32 (5) (2021) 1238–1255. DOI: 10.1109/TPDS.2020.3043768.

    Article  Google Scholar 

  36. Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen, Y. Zhang, Blockchain empowered arbitrable data auditing scheme for network storage as a service, IEEE Transactions on Services Computing 13 (2) (2020) 289–300. DOI: 10.1109/TSC.2019.2953033.

    Article  Google Scholar 

  37. Q. Liu, Y. Peng, J. Wu, T. Wang, G. Wang, Secure multi-keyword fuzzy searches with enhanced service quality in cloud computing, IEEE Transactions on Network and Service Management 18 (2) (2021) 2046–2062. DOI: 10.1109/TNSM.2020.3045467.

    Article  Google Scholar 

  38. Liu, Q., Peng, Y., Pei, S., Wu, J., Peng, T., & Wang, G. Prime inner product encoding for effective wildcard based multi-keyword fuzzy search, IEEE Transactions on Services Computing https://doi.org/10.1109/TSC.2020.3020688.

  39. Y. Xu, C. Zhang, Q. Zeng, G. Wang, J. Ren, Y. Zhang, Blockchain-enabled accountability mechanism against information leakage in vertical industry services, IEEE Transactions on Network Science and Engineering 8 (2) (2021) 1202–1213. DOI: https://doi.org/10.1109/TNSE.2020.2976697.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, B., Li, X., Yang, L. et al. Cloud Computing-aided Multi-type Data Fusion with Correlation for Education. Wireless Netw 30, 4109–4120 (2024). https://doi.org/10.1007/s11276-021-02865-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02865-y

Keywords