Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

User grouping and power allocation in NOMA-based internet of things

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the increasing number of terminal devices in the sensor network and the Internet of things, non-orthogonal multiple access (NOMA) will be widely used in the future to improve spectrum resource utilization. In this paper, we considered how to control massive devices in the downlink in of scenario of space-based Internet of Things (S-IoT). In the case of multiple base stations (BSs), user fairness is a difficult problem, which usually requires a traversal algorithm to achieve the optimal solution. However, the time complexity caused by this method is the product of the complexity of user grouping and power allocation, which is unbearable. We split the problem into two sub-problems changing complexity from product form to additive form, and solve them by using low time complexity algorithms respectively. Firstly, we use a threshold-based algorithm to implement user grouping, and then use a bisection iterative algorithm for power allocation. In the simulation, we compared design with several benchmarks and results show that the minimum user rate is significantly improved and closed to optimal value by using proposed algorithm in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Popovski, P., Trillingsgaard, K. F., Simeone, O., & Durisi, G. (2018). 5g wireless network slicing for embb, urllc, and mmtc: A communication-theoretic view. IEEE Access, 6, 55765–55779. https://doi.org/10.1109/ACCESS.2018.2872781.

    Article  Google Scholar 

  2. Liu, J., Shi, Y., Fadlullah, Z. M., & Kato, N. (2018). Space-air-ground integrated network: A survey. IEEE Communications Surveys and Tutorials, 20(4), 2714–2741. https://doi.org/10.1109/COMST.2018.2841996

    Article  Google Scholar 

  3. Wang, Y., Su, Z., Ni, J., Zhang, N., & Shen, X. (2022). Blockchain-empowered space-air-ground integrated networks: Opportunities, challenges, and solutions. IEEE Communications Surveys and Tutorials, 24(1), 160–209. https://doi.org/10.1109/COMST.2021.3131711

    Article  Google Scholar 

  4. Qin, P., Fu, Y., Zhao, X., Wu, K., Liu, J., & Wang, M. (2022). Optimal task offloading and resource allocation for c-noma heterogeneous air-ground integrated power internet of things networks. IEEE Transactions on Wireless Communications, 21(11), 9276–9292. https://doi.org/10.1109/TWC.2022.3175472

    Article  Google Scholar 

  5. Islam, S.M.R., Avazov, N., Dobre, O.A., Kwak, K.-s.: Power-domain non-orthogonal multiple access (noma) in 5g systems: Potentials and challenges. IEEE Communications Surveys and Tutorials 19(2), 721–742 (2017). https://doi.org/10.1109/COMST.2016.2621116

  6. Wu, G., Zheng, W., Li, Y., & Zhou, M. (2021). Energy-efficient power allocation for iot devices in cr-noma networks. China Communications, 18(4), 166–181. https://doi.org/10.23919/JCC.2021.04.013.

    Article  Google Scholar 

  7. Saito, Y., Benjebbour, A., Kishiyama, Y., Nakamura, T.: System-level performance evaluation of downlink non-orthogonal multiple access (noma). In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 611–615 (2013). https://doi.org/10.1109/PIMRC.2013.6666209

  8. Liu, F., Mähönen, P., Petrova, M.: Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In: 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1127–1131 (2015). https://doi.org/10.1109/PIMRC.2015.7343467

  9. Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5g systems. IEEE Signal Processing Letters, 22(10), 1647–1651. https://doi.org/10.1109/LSP.2015.2417119

    Article  Google Scholar 

  10. Ding, Z., Fan, P., & Poor, H. V. (2016). Impact of user pairing on 5g nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023. https://doi.org/10.1109/TVT.2015.2480766

    Article  Google Scholar 

  11. Deng, D., Fan, L., Lei, X., Tan, W., & Xie, D. (2017). Joint user and relay selection for cooperative noma networks. IEEE Access, 5, 20220–20227. https://doi.org/10.1109/ACCESS.2017.2751503

    Article  Google Scholar 

  12. Al-Abbasi, Z. Q., & So, D. K. C. (2017). Resource allocation in non-orthogonal and hybrid multiple access system with proportional rate constraint. IEEE Transactions on Wireless Communications, 16(10), 6309–6320. https://doi.org/10.1109/TWC.2017.2721936

    Article  Google Scholar 

  13. Dang, H.-P., Nguyen, M.-S.V., Do, D.-T., Nguyen, M.-H., Pham, M.-T., & Kim, A.-T. (2022). Empowering intelligent surfaces and user pairing for iot relaying systems: Outage probability and ergodic capacity performance. Sensors, 22, 17. https://doi.org/10.3390/s22176576.

    Article  Google Scholar 

  14. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (noma) systems. IEEE Access, 4, 6325–6343. https://doi.org/10.1109/ACCESS.2016.2604821

    Article  Google Scholar 

  15. Arzykulov, S., Celik, A., Nauryzbayev, G., & Eltawil, A. M. (2022). Uav-assisted cooperative and cognitive noma: Deployment, clustering, and resource allocation. IEEE Transactions on Cognitive Communications and Networking, 8(1), 263–281. https://doi.org/10.1109/TCCN.2021.3105133

    Article  Google Scholar 

  16. Choi, J. (2016). Power allocation for max-sum rate and max-min rate proportional fairness in noma. IEEE Communications Letters, 20(10), 2055–2058. https://doi.org/10.1109/LCOMM.2016.2596760

    Article  Google Scholar 

  17. Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal on Selected Areas in Communications, 35(12), 2744–2757. https://doi.org/10.1109/JSAC.2017.2725618

    Article  Google Scholar 

  18. Liang, W., Ding, Z., Li, Y., & Song, L. (2017). User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Transactions on Communications, 65(12), 5319–5332. https://doi.org/10.1109/TCOMM.2017.2744640

    Article  Google Scholar 

  19. Zhu, L., Zhang, J., Xiao, Z., Cao, X., & Wu, D. O. (2019). Optimal user pairing for downlink non-orthogonal multiple access (noma). IEEE Wireless Communications Letters, 8(2), 328–331. https://doi.org/10.1109/LWC.2018.2853741

    Article  Google Scholar 

  20. Di, B., Bayat, S., Song, L., Li, Y.: Radio resource allocation for downlink non-orthogonal multiple access (noma) networks using matching theory. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2015). https://doi.org/10.1109/GLOCOM.2015.7417643

  21. Lv, L., Chen, J., Ni, Q., & Ding, Z. (2017). Design of cooperative non-orthogonal multicast cognitive multiple access for 5g systems: User scheduling and performance analysis. IEEE Transactions on Communications, 65(6), 2641–2656. https://doi.org/10.1109/TCOMM.2017.2677942

    Article  Google Scholar 

  22. Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5g systems: Tractability and computation. IEEE Transactions on Wireless Communications, 15(12), 8580–8594. https://doi.org/10.1109/TWC.2016.2616310

    Article  Google Scholar 

  23. Lv, L., Chen, J., Ni, Q., Ding, Z., & Jiang, H. (2018). Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5g spectrum sharing. IEEE Communications Magazine, 56(4), 188–195. https://doi.org/10.1109/MCOM.2018.1700687

    Article  Google Scholar 

  24. Jiao, J., Wu, S., Lu, R., & Zhang, Q. (2021). Massive access in space-based internet of things: Challenges, opportunities, and future directions. IEEE Wireless Communications, 28(5), 118–125. https://doi.org/10.1109/MWC.001.2000456

    Article  Google Scholar 

  25. Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2016). A general power allocation scheme to guarantee quality of service in downlink and uplink noma systems. IEEE Transactions on Wireless Communications, 15(11), 7244–7257. https://doi.org/10.1109/TWC.2016.2599521

    Article  Google Scholar 

  26. Ali, S., Hossain, E., & Kim, D. I. (2017). Non-orthogonal multiple access (noma) for downlink multiuser mimo systems: User clustering, beamforming, and power allocation. IEEE Access, 5, 565–577. https://doi.org/10.1109/ACCESS.2016.2646183

    Article  Google Scholar 

  27. Lin, Z., Lin, M., Wang, J.-B., de Cola, T., & Wang, J. (2019). Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access. IEEE Journal of Selected Topics in Signal Processing, 13(3), 657–670. https://doi.org/10.1109/JSTSP.2019.2899731

    Article  Google Scholar 

  28. Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless-powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(12), 8422–8436. https://doi.org/10.1109/TWC.2016.2614937

    Article  Google Scholar 

  29. Liu, X., & Zhang, X. (2020). Noma-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Transactions on Industrial Informatics, 16(8), 5379–5388. https://doi.org/10.1109/TII.2019.2947435

    Article  Google Scholar 

  30. Chen, Z., Ding, Z., Dai, X., & Zhang, R. (2017). An optimization perspective of the superiority of noma compared to conventional oma. IEEE Transactions on Signal Processing, 65(19), 5191–5202. https://doi.org/10.1109/TSP.2017.2725223

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 62171158 and the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology under Grant 2018B030322004. This work was also supported by the project “The Major Key Project of PCL (PCL2021A03-1)” from Peng Cheng Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Shi, S. & Xu, Z. User grouping and power allocation in NOMA-based internet of things. Wireless Netw 30, 5375–5387 (2024). https://doi.org/10.1007/s11276-023-03251-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03251-6

Keywords