Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Channel Estimation in Cognitive Radio Systems by means of Bayesian Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes enhancements to the channel(-state) estimation phase of a cognitive radio system. Cognitive radio devices have the ability to dynamically select their operating configurations, based on environment aspects, goals, profiles, preferences etc. The proposed method aims at evaluating the various candidate configurations that a cognitive transmitter may operate in, by associating a capability e.g., achievable bit-rate, with each of these configurations. It takes into account calculations of channel capacity provided by channel-state estimation information (CSI) and the sensed environment, and at the same time increases the certainty about the configuration evaluations by considering past experience and knowledge through the use of Bayesian networks. Results from comprehensive scenarios show the impact of our method on the behaviour of cognitive radio systems, whereas potential application and future work are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Radiocommunications Committee (ERC) (2002). European table of frequency allocations and utilizations frequency range 9 kHz to 275 GHz. ERC Report 25, January 2002.

  2. Mitola J., Maguire G. Jr. (1999) Cognitive radio: making software radios more personal. IEEE Personal Communications Magazine 6(6): 13–18

    Article  Google Scholar 

  3. Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas In Communications 23(2): 201–220

    Article  Google Scholar 

  4. Balamuralidhar P., Prasad R. (2008) A context driven architecture for cognitive radio nodes. Wireless Personal Communications 45(3): 423–434

    Article  Google Scholar 

  5. End-to-End Efficiency (E3) project (2008). https://ict-e3.eu/.

  6. Demestichas, P., Boscovic, D., Stavroulaki, V., Lee, A., & Strassner, J. (2006). m@ANGEL: Autonomic management platform for seamless wireless cognitive connectivity. IEEE Communications Magazine, 44(6).

  7. Strassner, J. (2005). Policy-based network management: Solutions for the next generation. Morgan Kaufmann (Series in networking).

  8. Neapolitan R.E. (2003) Learning Bayesian networks. Prentice-Hall, NJ

    Google Scholar 

  9. Pearl J. (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Francisco

    Google Scholar 

  10. Jensen F. (2001) Bayesian networks and decision graphs. Springer-Verlag, NY, USA

    MATH  Google Scholar 

  11. Qi Jiang, Joachim Speidel, Chunming Zhao (2008) A joint OFDM channel estimation and ici cancellation for double selective channels. Wireless Personal Communications 45(1): 131–143

    Article  Google Scholar 

  12. Morelli M., Mengali U. (2001) A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Transactions on Signal Processing 49(12): 3065–3073

    Article  Google Scholar 

  13. Heath R.W., Giannakis G.B. (1999) Exploiting input cyclostationarity for blind channel identification in OFDM systems. IEEE Transactions on Signal Processing 47(3): 848–856

    Article  Google Scholar 

  14. Zhou S., Giannakis G.B. (2001) Finite-alphabet based channel estimation for OFDM and related multicarrier systems. IEEE Transactions on Communications 49(8): 1402–1414

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhou S., Muquet B., Giannakis G.B. (2002) Subspace-based (semi-) blind channel estimation for block precoded space-time OFDM. IEEE Transactions on Signal Processing 50(5): 1215–1228

    Article  Google Scholar 

  16. Petropulu A., Zhang R. (2004) Blind OFDM channel estimation through simple linear precoding. IEEE Transactions on Wireless Communications 3(2): 647–655

    Article  Google Scholar 

  17. Rashad, I., Budiarjo, I., & Nikookar, H. (2007). Efficient pilot pattern for OFDM-based cognitive radio channel estimation—Part 1. In Communications and Vehicular Technology in the Benelux, 2007 14th IEEE Symposium on (pp. 1–5, 15–15). November 2007.

  18. Budiarjo, I., Rashad, I., & Nikookar, H. (2007). Efficient pilot pattern for OFDM-based cognitive radio channel estimation—Part 2. In Communications and Vehicular Technology in the Benelux, 2007 14th IEEE Symposium on (pp.1–5, 15–15). November 2007.

  19. Soysal, A., Ulukus, S., & Clancy, C. (2008). Channel estimation and adaptive M-QAM in cognitive radio links. In Proc. IEEE International Conference on Communications (ICC) 08’, Beijing, China, 19th–23rd May, 2008.

  20. Heckerman, D. (1995). A tutorial on learning with Bayesian networks. In Report No. MSR-TR-95–06, Microsoft Research.

  21. Tetko I.V., Livingstone D.J., Luik A.I. (1995) Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences 35: 826–833

    Google Scholar 

  22. Khanafer, R., Moltsen, L., Dubreil, H., Altman, Z., & Barco, R. (2006). A Bayesian approach for automated troubleshooting for UMTS networks. In Proc. 17th IEEE Int’l Symp. Personal, Indoor and Mobile Radio Comm. (PIMRC ’06), August 2006.

  23. Barco R., Wille V., Dı’ez L. (2005) System for automated diagnosis in cellular networks based on performance indicators. European Trans. Telecommunications 16(5): 399–409

    Article  Google Scholar 

  24. Barco, R., Lázaro, P., Díez, L., & Wille, V. (2008). Continuous versus discrete model in auto-diagnosis systems for wireless networks. IEEE Transactions on Mobile Computing, in press.

  25. Koutsorodi A., Adamopoulou E., Demestichas K., Theologou M. (2007) Service configuration and user profiling in 4G terminals. Wireless Personal Communications 43(4): 1303–1321

    Article  Google Scholar 

  26. Demestichas, K., Koutsorodi, A., Adamopoulou, E., & Theologou, M. (2007). Modelling user preferences and configuring services in B3G devices. Wireless Networks in press.

  27. Bauer, E., Koller, D., & Singer, Y. (1997). Update rules for parameter estimation in Bayesian networks. In Proceedings of the 13th Annual Conference on Uncertainty in AI (1997), pp. 3–13.

  28. Zhang, S. Z., Yu, H., Ding, H., Yang, N. H., & Wang, X. K. (2003). An application of online learning algorithm for Bayesian network parameter. In 2003 International Conference on, Machine Learning and Cybernetics, Vol. 1, pp. 153–156, November 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Demestichas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demestichas, P., Katidiotis, A., Tsagkaris, K.A. et al. Enhancing Channel Estimation in Cognitive Radio Systems by means of Bayesian Networks. Wireless Pers Commun 49, 87–105 (2009). https://doi.org/10.1007/s11277-008-9559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9559-1

Keywords