Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Angle–Frequency Estimation Using Trilinear Decomposition of the Oversampled Output

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This letter links joint angle and frequency estimation problem to the trilinear model and derives a novel blind joint angle and frequency estimation algorithm. Angle and frequency are obtained based on trilinear decomposition of a trilinear model, which is constructed based on oversampling the system output. The proposed algorithm has better performance, and supports small sample sizes. The useful behavior of the proposed algorithm is verified by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Djeddou M., Belouchrani A., Aouada S. (2005) Maximum likelihood angle-frequency estimation in partially known correlated noise for Low-Elevation targets. IEEE Transactions on Signal Processing 53(8): 3057–3064

    Article  MathSciNet  Google Scholar 

  2. Zoltowski M.D., Mathews C.P. (1994) Real-time frequency and 2-D angle estimation with sub-nyquist spatio-temporal sampling. IEEE Transactions on Signal Processing 42: 2781–2794

    Article  Google Scholar 

  3. Lemma, A. N., van der Veen, A. J., & Deprettere, E. F. (1998). Joint angle frequency estimation using multi-resolution ESPRIT. In Proceedings on ICASSP, Seattle, 4, 1957–1960.

  4. Lemma A.N., van der Veen A.J., Deprettere E.F. (2003) Analysis of joint angle-frequency estimation using ESPRIT. IEEE Transactions on Signal Processing 51(5): 1264–1283

    Article  MathSciNet  Google Scholar 

  5. Chen, H., Wang, Y. L., & Wu, Z. W. (2003). Frequency and 2-D angle estimation based on uniform circular array. In 2003 IEEE International Symposium on Phased Array Systems and Technology, pp. 547–552.

  6. Otterstem B., Viberg M., Kailath T. (1992) Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data. IEEE Transactions on Signal Processing 40(3): 590–600

    Article  Google Scholar 

  7. Viberg M., Otterstem B. (1991) Sensor array processing based on subspace fitting. IEEE Transactions on Signal Processing 39(5): 1110–1121

    Article  MATH  Google Scholar 

  8. Kruskal J.B. (1977) Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Applications 18: 95–138

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhang, X., Shi, Y., & Xu, D. (2008). Novel blind joint direction of arrival and polarization estimation for polarization-sensitive uniform circular array. In Progress in Electromagnetics Research, PIER 86, pp. 19–37.

  10. Zhang, X., & Xu, D. (2008), Deterministic blind beamforming for electromagnetic vector sensor array. In Progress in Electromagnetics Research, PIER 84, pp. 363–377.

  11. Zhang X., Feng B., Xu D. (2008) Blind joint symbol detection and DOA estimation for OFDM system with antenna array. Wireless Personal Communications 46: 371–383

    Article  Google Scholar 

  12. Zhang, X., & Xu, D. (2007). Blind PARAFAC signal detection for polarization sensitive array. EURASIP Journal on Advances in Signal Processing, 2007, Article ID 12025, 7. doi:10.1155/2007/12025.

  13. Zhang X., Xu D. (2008) Blind source separation for two-dimension spread spectrum system based on trilinear decomposition. Journal of Circuits, Systems, and Computers 17(2): 297–308

    Article  Google Scholar 

  14. Vorobyov S.A., Rong Y., Sidiropoulos N.D., Gershman A.B. (2005) Robust iterative. Fitting of multilinear models. IEEE Transactions on Signal Processing 53(8): 2678–2689

    Article  MathSciNet  Google Scholar 

  15. Bro, R., Sidiropoulos, N. D., & Giannakis, G. B. (1999). A fast least squares algorithm for separating trilinear mixtures. International Workshop Independent Component Analysis and Blind Signal Separation, Aussois, France, pp. 289–294.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Xiaofei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiaofei, Z., Gaopeng, F., Jun, Y. et al. Angle–Frequency Estimation Using Trilinear Decomposition of the Oversampled Output. Wireless Pers Commun 51, 365–373 (2009). https://doi.org/10.1007/s11277-008-9652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9652-5

Keywords