Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Direction of Arrival to Estimate Obstacle Areas in Cognitive Sensor Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We propose a mechanism to form hole-like shapes with each of several sensor nodes equipped with a directional antenna called CS-DOA. In the system, we use an adaptive beamformer that can receive useful signals and adjust receiving angles through direction-of-arrival (DOA) estimations. We analyze single sources and links with sensor nodes to form a path around a given hole’s margins. This work’s proposed mechanism uses different receiving angles to detect a single source, and through the source message, we can detect and determine the given hole’s margins. We use cognitive radio to estimate the energy of sensor nodes. We also propose energy consumption control via a game scheme to prolong sensor nodes’ lifetime. This innovative mechanism increases performance and convenience, and improves our ability to make rigorous calculations regarding environmental topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Minglu, Ding Ling, Shao Yifeng, Zhang Zhensheng, Li Bo (2010) On reducing broadcast transmission cost and redundancy in ad hoc wireless networks using directional antennas. IEEE Transactions on Vehicular Technology 59(3): 1433–1442

    Article  Google Scholar 

  2. Rong P., Sichitiu M. (2006) Angle of arrival localization for wireless sensor networks. 3rd Annual IEEE Communications Society on SECON 1: 374–382

    Google Scholar 

  3. Cartigny J., Simplot-Ryl D., Stojmenovic I. (2004) An adaptive localized scheme for energy-efficient broadcasting in ad hoc networks with directional antennas. PWC, Lecture Notes in Computer Science 3260: 399–413

    Article  Google Scholar 

  4. Ramanathan R., Redi J., Santivanez C., Wiggins D., Polit S. (2005) Ad hoc networking with directional antennas: A complete system solution. IEEE Journal on Selected Areas in Communications 23(3): 496–506

    Article  Google Scholar 

  5. Chunyu H., Yifei H., Hou J. (2003) On mitigating the broadcast storm problem with directional antennas. IEEE International Conference on Communications, ICC, 1: 104–110

    Google Scholar 

  6. Shen C.-C., Huang Z., Jaikaeo C. (2006) Directional broadcast for mobile ad hoc networks with percolation theory. IEEE Transactions on Mobile Computing 5(4): 317–332

    Article  Google Scholar 

  7. Lim H., Kim C. (2000) Multicast tree construction and flooding in wireless ad hoc networks. ACM MSWiM 1: 61–68

    Article  Google Scholar 

  8. Lou W., Wu J. (2002) On reducing broadcast redundancy in ad hoc wireless networks. IEEE Transactions on Mobile Computing 1(2): 111–122

    Article  Google Scholar 

  9. Peng W., Lu X. (2001) AHBP: An efficient broadcast protocol for mobile ad hoc networks. Journal of Computer Science and Technology 16(2): 114–125

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao F., Guibas L. (2004) Wireless sensor networks: An information processing approach. Elsevier, Amsterdam

    Google Scholar 

  11. Karl H., Willig A. (2005) Protocols and architectures for wireless sensor networks. Wiley, New York, NY

    Book  Google Scholar 

  12. Bulusu N., Heidemann J., Estrin D. (2000) GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications on Magazine 7(5): 28–34

    Article  Google Scholar 

  13. Carus A., Urpi A., Chessa S., De S. (2005) GPS-free coordinate assignment and routing in wireless sensor networks. 24th IEEE Computer Communications Societies (INFOCOM) 1: 150–160

    Google Scholar 

  14. Li, J., Jannotti, J., De Couto, D., Karger, D., & Morris, R. (2000). A scalable location service for geographic ad-hoc routing. In Proceedings of Mobicom.

  15. Rao, A., Papadimitriou, C., Shenker, S., & Stoica, I. (2003). Geographic routing without location information. In Proceedings of Mobicom.

  16. Fonseca R., Ratnasamy S., Culler D., Shenker S., Stoica I. (2004) Beacon vector routing: Scalable point-to-point in wireless sensornets. Intel Research, IRB-TR-04 12: 2–15

    Google Scholar 

  17. Karp, B., & Kung, H.T. (2000). GPSR: greedy perimeter stateless routing for wireless networks. In Proceedings of ACM MobiCom, (pp. 243–254).

  18. Yu, Y., Estrin, D., & Govindan, R. (2001). Geographical and energy-aware routing: A recursive data dissemination protocol for wireless sensor networks. UCLA Computer Science Department Technical Report, Los Angeles: University of California, (pp. 1–11).

  19. Yu, F., Choi, Y., Park, S., Lee, E., Tian, Y., & Kim, S. (2007). An edge nodes energy efficient hole modeling in wireless sensor networks. IEEE Global Telecommunications Conference (GLOBECOM), (pp. 4724–4728).

  20. Poor H.V. (1994) An introduction to signal detection and estimation (2nd ed.). Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  21. Filar J.A., Vrieze K. (1997) Competitive Markov decision processes. Springer, New York, NY

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Jiun Horng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, ST., Horng, GJ. & Wang, CH. Using Direction of Arrival to Estimate Obstacle Areas in Cognitive Sensor Environments. Wireless Pers Commun 69, 269–284 (2013). https://doi.org/10.1007/s11277-012-0572-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0572-z

Keywords