Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Low-Complexity Estimation of the Nominal Azimuth and Elevation for Incoherently Distributed Sources

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper develops a new technique for estimating the two-dimensional direction-of-arrivals (DOAs) of incoherently distributed (ID) sources, which can estimate effectively the nominal azimuth and nominal elevation of multiple ID sources at the cost of less computational complexity. Using a pair of parallel uniform linear arrays (ULAs), a new approach for 2D DOA estimation of multiple ID sources is proposed. The proposed method firstly estimates the nominal elevation by the modified TLS-ESPRIT method, which is based on the approximate rotational invariance property with respect to the nominal elevation between two closely parallel ULAs. And then with the help of the nominal elevation estimates, the nominal azimuth is estimated by one-dimensional searching. Without multi-dimensional searching, the proposed method has significantly reduced the computational cost compared with the existing methods. Simulation results indicate that the proposed method can exhibit a good performance and be applied to the multisource scenario where different sources may have different angular distribution shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valaee S., Champagne B., Kabal P. (1995) Parametric localization of distributed sources. IEEE Transactions on Signal Processing 43(9): 2144–2153

    Article  Google Scholar 

  2. Zetterberg, P. (1997) Mobile cellular communications with base station antenna arrays: Spectrum efficiency, algorithms, and propagation models, PhD Dissertation, Royal Institute of Technology, Stockholm, Sweden, Signal, Sensors, Systems Department

  3. Astely, D. (1999) Spatio and spatio-temporal processing with antenna arrays in wireless systems, PhD Dissertation, Royal Institute of Technology, Stockholm, Sweden, Signal, Sensors, Systems Department

  4. Raich R., Goldberg J., Messer H. (2000) Bearing estimation for a distributed source: Modeling, inherent accuracy limitations and algorithms. IEEE Transactions on Signal Processing 48(2): 429–441

    Article  Google Scholar 

  5. Meng Y., Stoica P., Wong K. M. (1996) Estimation of the direction of arrival of spatially dispersed signals in array processing. IEEE Proceedingsof the radar, sonar and navigation 143(1): 1–9

    Article  Google Scholar 

  6. Shahbazpanahi S., Valaee S., Bastani M. H. (2001) Distributed source localization using ESPRIT algorithm. IEEE Transactions on Signal Processing 49(10): 2169–2178

    Article  Google Scholar 

  7. Bengtsson, M. (1999) Antenna array processing for high rank data models, PhD Dissertation, Royal Institute of Technology, Stockholm, Sweden, Signal, Sensors, Systems Department

  8. Bengtsson M., Ottersten B. (2001) A generalization of weighted subspace fitting to full-rank models. IEEE Transactions on Signal Processing 49(5): 1002–1012

    Article  MathSciNet  Google Scholar 

  9. Trump T., Ottersten B. (1996) Estimation of nominal direction of arrival and angular spread using an array of sensors. Signal Processing 50(4): 57–69

    Article  MATH  Google Scholar 

  10. Besson O., Vincent F., Stoica P. (2000) Approximate maximum likelihood estimators for array processing in multiplicative noise environments. IEEE Transactions on Signal Processing 48(9): 2506–2518

    Article  MATH  Google Scholar 

  11. Besson O., Stoica P. (2000) Decoupled estimation of DOA and angular spread for a spatially distributed source. IEEE Transactions on Signal Processing 48(7): 1872–1882

    Article  MATH  Google Scholar 

  12. Shahbazpanahi S., Valaee S., Gershman A. B. (2004) A covariance fitting approach to parametric localization of multiple incoherently distributed sources. IEEE Transactions on Signal Processing 52(3): 592–600

    Article  MathSciNet  Google Scholar 

  13. Zoubir A., Wang Y., Chargé P. (2006) On the ambiguity of COMET-EXIP algorithm for estimating a scattered source. Signal Processing 86(2): 733–743

    Article  MATH  Google Scholar 

  14. Hassanien A., Shallbazpanahi S., Gershman A. B. (2004) A generalized Capon estimator for localization of multiple spread sources. IEEE Transactions on Signal Processing 52(l): 280–283

    Article  MathSciNet  Google Scholar 

  15. Lee J. H., Cheng K. P., Wang C. C. (2006) Robust adaptive array beamforming under steering angle mismatch. Signal Processing 86: 296–309

    Article  MATH  Google Scholar 

  16. Zoubir A., Wang Y. (2008) Robust generalized Capon algorithm for estimating the angular parameters of multiple incoherently distributed sources. IET Signal Processing 2(2): 163–168

    Article  MathSciNet  Google Scholar 

  17. Lee, S. R., Song,I., & Chang, T., et al. (1996) Distributed source location estimation using a circular array. In Proceeding of the ISSPA (pp. 341–344).

  18. Lee, S. R., Song, I., Lee, & Y. U., et al. (1996) Estimation of distributed elevation and azimuth angles using linear arrays. In Proceeding of the MILCOM (pp. 868–872)

  19. Wan Q., Peng Y. N. (2001) Low-complexity estimator for four-dimensional parameters under a reparameterised distributed source model. IEE Proceedings of the Radar, Sonar Navigation 148(6): 313–317

    Article  Google Scholar 

  20. Wan, Q., & Yang, W. L., (2001) Low-complexity estimator for two-dimensional DOA under a distributed source model. In Proceeding of the CIE Radar (pp. 814–818)

  21. Lee S. R., Song I., Kwon H. et al (2003) Low-complexity estimation of 2D DOA for coherently distributed sources. Signal Processings 83: 1789–1802

    Article  Google Scholar 

  22. Zhang, G. Y., & Tang, B. (2008). Decoupled estimation of 2D DOA for coherently distributed sources using 3D matrix pencil method. EURASIP Journal on Advances in Signal Processing. 2008, 417157: 1–7

  23. Guo X.S., Wan Q., Yang W.L. et al (2009) Low complexity 2D coherently distributed sources decoupled DOAs estimation method. Science in China Series F: Information Sciences 52(5): 835–842

    Article  MATH  Google Scholar 

  24. Zheng Z., Li G. J., Teng Y. L. (2012) Simplified estimation of 2D DOA for coherently distributed sources. Wireless Personal Communications 62(4): 907–922

    Article  Google Scholar 

  25. Zheng Z., Li G. J., Teng Y. L. (2012) 2D DOA estimator for multiple coherently distributed sources using modified propagator. Circuits Systems Signal Processing 31(1): 255–270

    Article  MathSciNet  MATH  Google Scholar 

  26. Zheng Z., Li G. J., Teng Y. L. (2012) Low-complexity 2D DOA estimator for multiple coherently distributed sources. COMPEL 31(2): 443–459

    Article  MathSciNet  Google Scholar 

  27. Boujemaa H. (2005) Extension of COMet algorithm to multiple diffuse source localization in azimuth and elevation. European Transactions on Telecommunications 16: 557–566

    Article  Google Scholar 

  28. Roy R., Kailath T. (1986) ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Transactions on ASSP 34(10): 1340–1342

    Article  Google Scholar 

  29. Roy R., Kailath T. (1989) ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on ASSP 37(7): 984–995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Zheng, Z. & Li, G. Low-Complexity Estimation of the Nominal Azimuth and Elevation for Incoherently Distributed Sources. Wireless Pers Commun 71, 1777–1793 (2013). https://doi.org/10.1007/s11277-012-0909-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0909-7

Keywords