Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Transmit Beamforming for MIMO Optical Wireless Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper focuses on transmit beamforming for multiple-input multiple-output optical wireless communication (OWC) systems with intensity modulation and direct detection (IM/DD). OWC with IM/DD requires the transmitted signals to be nonnegative, for which existing beamforming schemes developed for radio frequency systems cannot be applied directly. We propose effective schemes for OWC over frequency flat and frequency selective channels. For frequency flat fading, the property of the beamforming vector is derived. For frequency selective fading, bit-error rate performances of the proposed scheme with zero-forcing and minimum mean-square error frequency domain equalization receivers are derived, and a suboptimal beamforming vector for frequency selective fading channels is proposed. Compared with asymmetrically clipped optical orthogonal frequency division multiplexing based frequency domain beamforming, the proposed scheme needs much less feedback information and has a better error performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gfeller, F. R., & Bapst, U. H. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11), 1474–1486.

    Article  Google Scholar 

  2. Azhar, A. H., Tran, T. A., & O’Bren, D. (2013). A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. Photonics Technology Letters, IEEE, 25(2), 129–134.

    Article  Google Scholar 

  3. Yang, S., Jeong, E., Kim, D., Kim, H., Son, Y., & Han, S. (2013). Indoor three-dimensional location estimation based on LED visible light communication. Electronics Letters, 49(1), 1–2.

    Article  Google Scholar 

  4. Park, I., Kim, Y., Cha, J., Jang, Y., & Kim, J. (2011). Performance of efficient signal detection for LED-ID systems. Wireless Personal Communications, 60(3), 533–545.

    Article  Google Scholar 

  5. Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. Consumer Electronics, IEEE Transactions, 50(1), 100–107.

    Article  Google Scholar 

  6. Wu, L., Zhang, Z., & Liu, H. (2012). Modulation scheme based on precoder matrix for MIMO optical wireless communication systems. ommunications Letters, IEEE, 16(9), 1516–1519.

    Article  Google Scholar 

  7. Grant, A. J. (2005). Performance analysis of transmit beamforming. Communications, IEEE Transactions, 53(4), 738–744.

    Article  MathSciNet  Google Scholar 

  8. Palomar, D., Cioffi, J., & Lagunas, M. (2003). Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization. Signal Processing, IEEE Transactions, 51(9), 2381–2401.

    Article  Google Scholar 

  9. Ibrahim, S. A., Alias, M. Y., & Ahmad, N. N. (2012). Performance of adaptive modulation scheme for adaptive minimum symbol error rate beamforming receiver. Wireless Personal Communications. doi:10.1007/s11277-012-0849-2.

  10. Kongara, K. P., Kuo, P., Smith, P. J., Garth, L. M., & Clark, A. (2009). Block-based performance measures for MIMO OFDM beamforming systems. Vehicular Technology, IEEE Transactions, 58(5), 2236–2248.

    Article  Google Scholar 

  11. Liang, Y., Schober, R., & Gerstacker, W. (2009). Time domain transmit beamforming for MIMO-OFDM systems with finite rate feedback. Communications, IEEE Transactions, 57(9), 2828–2838.

    Article  Google Scholar 

  12. Armstrong, J., & Lowery, A. (2006). Power efficient optical OFDM. Electronics Letters, 42(6), 370–372.

    Article  Google Scholar 

  13. Barry, J. R. (1994). Wireless infrared communications: Kluwer Academic publishers.

  14. Proakis, J. G. (2001). Digital communications (5th ed.). New York: McGrawHill.

    Google Scholar 

  15. Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE, 85(2), 265–298.

    Article  Google Scholar 

  16. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Research Fund of NCRL (Nos. 2014B04, 2014A03, and 2014B03), NSFC project (60902010), 863 project (SS2013AA010701), National Science and Technology Major projects of China (2009ZX03006- 008-02 and 2010ZX03006-003-02), the Program for New Century Excellent Talents in University (NCET-09-0299)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaichen Zhang.

Appendices

Appendix 1

Setting of the beamforming vector can be viewed as the following optimization problem. The object function

$$\begin{aligned} \mathop {\max }\limits _{\varvec{b}_f } \{ ||\varvec{H}\varvec{b}_f ||^2_2 \} = \max \left\{ \sum \limits _{i = 1}^{n_r } {\left( \sum \limits _{j = 1}^{n_t } {\eta _{i,j} b_{f,j} }\right) ^2 } \right\} \end{aligned}$$
(39)

subject to

$$\begin{aligned} {\left\{ \begin{array}{ll} \sum \limits _{j = 1}^{n_t } {b_{f,j} } = 1 \\ b_{f,j} \ge 0\quad j = 1,\cdots ,n_t. \end{array}\right. } \end{aligned}$$
(40)

The object function \(g(\varvec{b}_f ) = \sum \limits _{i = 1}^{n_r } {\left( \sum \limits _{j = 1}^{n_t } {\eta _{i,j} b_{f,j}} \right) ^2 } \), when the constraints are removed, is a multivariate quadratic function, and the gradient of this function is

$$\begin{aligned} {{\varvec{r }}}= \left[ \frac{{\partial g(\varvec{b}_f )}}{\partial {b_{f,1} }},\;\frac{{\partial g(\varvec{b}_f )}}{\partial {b_{f,2} }}, \cdots ,\frac{{\partial g(\varvec{b}_f )}}{\partial {b_{f,n_t } }}\right] ^T, \end{aligned}$$
(41)

where the \(k\)-th entry of \({{\varvec{r}}}\) is \(r_k= 2\sum \limits _{i = 1}^{n_r } {\eta _{i,k} \sum \limits _{j = 1}^{n_t }\eta _{i,j}b_{f,j} } \). In the constraint region, all components of \({{\varvec{r}}}\) are nonnegative. The Hessian matrix of the object function is

$$\begin{aligned} {{\varvec{D}}} = \left[ \begin{array}{l} \frac{{\partial ^2 g(\varvec{b}_f )}}{{\partial (b_{f,1} )^2 }}\quad \quad \frac{{\partial ^2 g(\varvec{b}_f )}}{{\partial b_{f,1} \partial b_{f,2} }}\quad \cdots \quad \frac{{\partial ^2 g(\varvec{b}_f )}}{{\partial b_{f,1} \partial b_{f,n_t } }} \\ \quad \vdots \\ \frac{{\partial ^2 g(\varvec{b}_f )}}{{\partial b_{f,n_t } \partial b_{f,1} }}\quad \quad \cdots \quad \quad \quad \; \cdots \quad \;\frac{{\partial ^2 g(\varvec{b}_f )}}{{\partial (b_{f,n_t } )^2 }} \\ \end{array} \right] \end{aligned}$$
(42)

where the \((m,k)\)-th entry of \(\varvec{D}\) is \((\varvec{D})_{m,k} = 2\sum \limits _{i = 1}^{n_r } {\eta _{i,m} \eta _{i,k} } \). Define a matrix \({{\varvec{A}}}\) whose \((i,j)\)-th entry is \({{\varvec{A}}}_{i,j}=\eta _{i,j}\). Then \(\varvec{D}= 2\varvec{A}^T\varvec{A}\). For any nonzero vector \({{\varvec{z}}}\), it can be shown

$$\begin{aligned}&{{\varvec{z}}}^T \varvec{D}{{\varvec{z}}} \nonumber \\&= 2(\varvec{A}{{\varvec{z}}})^T \varvec{A}{{\varvec{z}}} > 0. \end{aligned}$$
(43)

Therefore, \(\varvec{D}\) is a positive definite matrix, which means that the object function is convex region and there exists a minimum value for the object function. The maximum value of the optimization problem exists in the boundary of the constraints. The constraints are linear, and the boundary points are

$$\begin{aligned} {{\varvec{a}}}_k = [0,0,\cdots ,\underbrace{\;1\;}_{k\mathrm{{ - th}}},\cdots ,0]^T\quad k = 1,\cdots ,n_t. \end{aligned}$$
(44)

Thus, the optimal beamforming vector takes the form as

$$\begin{aligned} \varvec{b}_{f,\mathrm{opt}} \in \{ {{\varvec{a}}}_k = [0,0,\cdots ,\underbrace{\;1\;}_{k\mathrm{{ - th}}},\cdots ,0]^T\quad k = 1,\cdots ,n_t \}. \end{aligned}$$
(45)

Appendix 2

In frequency selective fading channels, the suboptimal algorithm is

$$\begin{aligned} \mathop {\max }\limits _{b_{f,j},j=1,\cdots ,n_t } \left\{ { \sum \limits _{n}{\left( \sum \limits _{i = 1}^{n_r }\sum \limits _{j = 1}^{n_t } {b_{f,j} \tilde{h}_{i,j} (n)}\right) ^2 } }\right\} \end{aligned}$$
(46)

subject to

$$\begin{aligned} {\left\{ \begin{array}{ll} \sum \limits _{j = 1}^{n_t } {b_{f,j} } = 1 \\ b_{f,j} \ge 0\quad j = 1,\cdots ,n_t. \end{array}\right. } \end{aligned}$$
(47)

The object function can be expressed as

$$\begin{aligned} g(\varvec{b}_f )={ \sum \limits _{n}{\left( \sum \limits _{i = 1}^{n_r }\sum \limits _{j = 1}^{n_t } {b_{f,j} \tilde{h}_{i,j} (n)}\right) ^2 } } \end{aligned}$$
(48)

which is a quadratic function of \(b_{f,j} \). The \(k\)-th component of the gradient vector is \(r_k={\sum \limits _{n}2{\left( \sum \limits _{i = 1}^{n_r }\sum \limits _{j = 1}^{n_t } {b_{f,j} \tilde{h}_{i,j} (n)}\right) {\left( \sum \limits _{i = 1}^{n_r }\tilde{h}_{i,k} (n)\right) }}} \), which is nonnegative in the constraint region. The \((m,k)\)-th entry of the Hessian matrix \(\varvec{D}\) is \((\varvec{D})_{m,k} = \sum \limits _{ n } {2\sum \limits _{i = 1}^{n_r } {\tilde{h}_{i,m} (n)}\sum \limits _{j = 1}^{n_r }{\tilde{h}_{j,k} (n)} } \). Define

$$\begin{aligned} \varepsilon [x(n)] = \sum \limits _{ n } {x(n)} \end{aligned}$$
(49)

and a vector \({{\varvec{m}}}(n)\) with the \(k\)-th entry

$$\begin{aligned} ({{\varvec{m}}}(n))_{k} = \sum \limits _{j = 1}^{n_r }{\tilde{h}_{j,k} (n)}. \end{aligned}$$
(50)

The Hessian matrix is \(\varvec{D}= 2\varepsilon [{{\varvec{m}}}(n){{\varvec{m}}}(n)^T]\). For any nonzero vector z, it can be shown that

$$\begin{aligned}&{{\varvec{z}}}^T \varvec{D}{{\varvec{z}}} \nonumber \\&= 2{{\varvec{z}}}^T \varepsilon [{{\varvec{m}}}(n) {{\varvec{m}}}(n)^T]{{\varvec{z}}} \nonumber \\&= 2\varepsilon [({{\varvec{m}}}(n)^T{{\varvec{z}}})^T ({{\varvec{m}}}(n)^T{{\varvec{z}}})]>0. \end{aligned}$$
(51)

Thus the Hessian matrix is a positive definite matrix, and the object function is convex and has a minimum value. The maximum value of the suboptimal problem exists in the boundary of the constraints. The suboptimal beamforming vector is

$$\begin{aligned} \varvec{b}_{f,\mathrm{sopt}} \in \{ {{\varvec{a}}}_k = [0,0,\cdots ,\underbrace{\;1\;}_{k\mathrm{{ - th}}},\cdots ,0]\quad k = 1,\cdots ,n_t \}. \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Zhang, Z. & Liu, H. Transmit Beamforming for MIMO Optical Wireless Communication Systems. Wireless Pers Commun 78, 615–628 (2014). https://doi.org/10.1007/s11277-014-1774-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1774-3

Keywords