Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-contiguous Channel Bonding for TV White Space Usage with NC-OFDM Transmission

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Contiguous channel bonding for using more than one channels together in TV white space has been considered in the IEEE 802.22-specified wireless regional area network system. To support more flexible channel usage, this paper investigates non-contiguous channel bonding as a potential extended feature of IEEE 802.22 standard. The transceiver structure with Non-Contiguous OFDM (NC-OFDM) transmission to support non-contiguous channel bonding is presented. The simulation results show that non-contiguous channel bonding achieves better symbol error rate performance with slightly higher peak to average power ratio comparing with contiguous channel bonding. Finally, the power spectrum density of NC-OFDM signals with non-contiguous channel bonding is analyzed and the number of additional guard subcarriers for mitigating out-of-band emissions are determined to comply with the required transmission spectrum mask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. FCC Proposed Rule. (2004). Unlicensed operation in the TV broadcast bands. US Federal Register, 69(117), 34103C34111.

  2. FCC Final Rule. (2009). Unlicensed operation in the TV broadcast bands. US Federal Register, 74(30), 7314C7332.

  3. FCC Notice. (2011). Unlicensed operation in the TV broadcast bands. US Federal Register, 76(26), 6789C6792.

  4. Digital Dividend, Cognitive Access, Statement on Licence-Exempting Cognitive Devices Using Interleaved Spectrum, OFCOM (2009).

  5. CEPT. (2009). Report from CEPT to the European Commission in response to the mandate on the identification of common and minimal (least restrictive) technical conditions for 790-862 MHz for the digital dividend in the European Union. CEPT Report 30 http://www.erodocdb.dk/Docs/doc98/official/pdf/CEPTREP030.PDF.

  6. Freyens, B. P., & Loney, M. (2011). Opportunities for white space usage in Australia. In IEEE Wireless VITAE, pp. 1–5.

  7. Contreras, S., Villardi, G., Funada, R., et al. (2011). An investigation into the spectrum occupancy in Japan in the context of TV White Space systems. In IEEE CROWNCOM, pp. 341–345.

  8. Fitch, M., Nekovee, M., Kawade, S., Briggs, K., & MacKenzie, R. (2011). Wireless service provision in TV white space with cognitive radio technology: A telecom operator’s perspective and experience. In IEEE communications magazine, pp. 64–73.

  9. Cordeiro, C., Challapali, K., & Philips, D. B. (2006). IEEE 802.22: The first worldwide wireless standard based on cognitive radios. Journal of Communications, 38–47.

  10. Deek, L., Garcia-Villegas, E., Belding, E., Lee, S., & Almeroth, K. (2014). Intelligent channel bonding in 802.11n WLANs. IEEE Transactions on Mobile Computing, 13(6), 1242–1255.

    Article  Google Scholar 

  11. Sengupta, S., Brahma, S., Chatterjee, M., & Sai Shankar, N. (2007). Enhancements to cognitive radio based IEEE 802.22 air-interface. In ICC’07, pp. 5155–5160.

  12. Rehmani, M. H., Lohier, S., & Rachedi, A. (2012). Channel bonding in cognitive radio wireless sensor networks. Proceeding of 2012 international conference on selected topics in mobile and wireless networking (iCOST), pp. 72–76.

  13. Wang, W., Gao, J., & Bai, Y. (2013). Non-contiguous channel bonding via NC-OFDM for using TV white spaces. Proceeding of CECNet 2013, 2013, 427–430.

  14. Cordeiro, C., & Ghosh, M. (2006). Channel bonding vs. channel aggregation: Facts and faction. IEEE P802.22 WG, https://mentor.ieee.org/802.22/dcn/06/22-06-0108-00-0000-bondingvs-aggregation.ppt.

  15. Cordeiro, C., & Ghosh, M. (2006). Channel bonding vs. channel aggregation: Facts and faction. IEEE P802.22 WG, https://mentor.ieee.org/802.22/dcn/06/22-06-0108-00-0000-bondingvs-aggregation.ppt.

  16. Wang, W., Gao, J., & Bai, Y. (2013). Non-contiguous channel bonding via NC-OFDM for using TV white spaces. Proceeding of CECNet 2013, 2013, 427–430.

    Google Scholar 

  17. Ghosh, C., Chen, S., & Agrawal, D. P. (2009). Priority-based spectrum allocation for cognitive radio networks employing NC-OFDM transmission. In Proceedings of IEEE MILCOM 2009, pp. 1–5.

  18. IEEE Std 802.22 Wireless Regional Area Networks (WRAN) Specific requirements. (2011). Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands.

  19. Alves, R. G., Osorio, P. L., & Swamy, M. N. S. (2000). General FFT pruning algorithm. Proceedings of the 43rd IEEE midwest symposium on circuits and systems, 3, 1192–1195.

  20. Rajbanshi, R., Wyglinski, A. M., & Minden, G. J. (2006). An efficient implementation of NC-OFDM transceivers for cognitive radios. In IEEE CROWNCOM 2006. pp. 1–5.

  21. Richard, V. N., & Prasad, R. (1999). OFDM for wireless multimedia communications. Norwood: Artech House Publishers.

    Google Scholar 

  22. You, Y. H., Hwang, I. T., Song, C. K., & Song, H. K. (2005). PAPR analysis for multi-band OFDM signals. Electronics Letters, 41, 261–262.

  23. Ochiai, H., & Imai, H. (2001). On the distribution of the peak-to-average power ratio in OFDM signals. IEEE Transactions on Communications, 49, 282C–289C.

  24. Rajbanshi, R., Wyglinski, A. M., & Minden, G. J. (2007). Peak-to-average power ratio analysis for NC-OFDM transmissions. In Proceedings of IEEE VTC-2007 fall, pp. 1351–1355.

  25. Waterschoot, T. V., Nir, V. L., Duplicy, J., & Moonen, M. (2010). Analytical expressions for the power spectral density of CP-OFDM and ZP-OFDM signals. IEEE Signal Processing Letters, 17(4).

  26. Hwang, S. H., Um, J. S., Song, M. S., Kim, C. J., Park, H. R., & Kim, Y. H. (2008). Design and verification of IEEE 802.22 WRAN physical layer. In CrownCom 2008, pp. 1–6.

  27. WRAN Channel Modeling (2005). IEEE802.22-05/0055r7.

  28. Webb, W. (2012). On using white space spectrum. IEEE Communications Magazine, 50(8), 145–151.

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (Grant No. 61062006 and Grant No. 61261024) and the Special Social Service Project Fund of Hainan University, China (Grant No. HDSF201301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Li, X., Wang, W. et al. Non-contiguous Channel Bonding for TV White Space Usage with NC-OFDM Transmission. Wireless Pers Commun 86, 385–401 (2016). https://doi.org/10.1007/s11277-015-2935-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2935-8

Keywords