Abstract
Maximizing the nodes lifetime is one of the major issues in the wireless sensor networks (WSNs). Clustering algorithms represent the most well-known solution for optimizing the total consumed energy of WSNs. In clustered WSNs, each sensor is able to supervise an event and send information to its cluster head (CH) which aggregates and transmits data to the base station (BS) through other CHs in the network. This scenario causes the ‘hot spots’ problem where closer CHs to the BS tend to die earlier because of the heavy relay data. Unequal clustering algorithms have tried to solve this problem and control the size of each cluster in the network. In this paper, we proposed a new unequal clustering algorithm called energy degree distance unequal clustering algorithm (EDDUCA) aiming to balance energy consumption and maximize the network lifetime. EDDUCA uses the ‘Sierpinski triangle’ method in order to devide network into unequal clusters. The obtained results indicate that EDDUCA can effectively balance the energy consumption and therefore can lengthen the network lifetime.
Similar content being viewed by others
References
Chen, Y., & Zhao, Q. (2005). On the lifetime of wireless sensor networks. IEEE Communications Letters, 9(11), 976–978.
Shu, Q., & Jong, S. P. (2013). Fault-tolerance data aggregation for clustering wireless sensor networ. Wireless Personal Communications, 51(1), 179–192.
Siva, R., Krishnan, S. R., Thangaraj, C., & Vimala, K. V. (2013). Achieving energy conservation by cluster based data aggregation in wireless sensor networks. Wireless Personal Communications, 73(3), 731–751.
Heewook, S., Sangman, M., Ilyong, C., & Moonsoo, K. (2014). Equal-size clustering for irregularly deployed wireless sensor networks. Wireless Personal Communications. doi:10.1007/s11277-014-2262-5.
Nitin, K., Ghanshyam, c., & Ajay, K. S. (2014). Effect of multi-path fading model on T-ANT clustering protocol for WSN. Wireless Networks. doi:10.1007/s11276-014-0846-3.
Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32, 662–667.
Devesh, P. S., Goudar, R. H., Bhasker, P., & Sreenivasa, R. (2014). Cluster head selection by randomness with data recovery in WSN. CSI Transactions on ICT, 2(2), 97–107.
Hesham, A., & Shuang, H. Y. (2009). Dynamic cluster head for lifetime efficiency in WSN. International Journal of Automation and Computing, 6(1), 48–54.
Xiang, M., Shi, W. R., Jiang, C. J., & Zhang, Y. (2010). Energy efficient clustering algorithm for maximizing lifetime of wireless sensor networks. International Journal of Electronics and Communications, 64, 289–298.
Soro, S., & Heinzelman, W. B. (2005). Prolonging the lifetime of wireless sensor networks via unequal clustering. In 19th IEEE international parallel and distributed processing symposium, Colorado, USA (pp. 236–243).
Pratyay, K., & Prasanta, K. J. (2013). Approximation schemes for load balanced clustering in wireless sensor networks. The Journal of Supercomputing, 68(1), 87–105.
Meenakshi, D., & Sushil, K. (2012). Energy efficient hierarchical clustering routing protocol for wireless sensor networks. CCSIT 2012, Part I, LNICST (Vol. 84, pp. 409–420). Springer.
Getsy, S., Prasanna, D. S., & Sridharan, S. (2012). A genetic-algorithm-based optimized clustering for energy-efficient routing in MWSN. ETRI Journal, 34(6), 922–931.
Bagci, H., & Yazici, A. (2013). An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Applied Soft Computing, 13, 1741–1749.
Jiguo, Y., Yingying, G., & Guanghui, W. (2011). An energy-driven unequal clustering protocol for heterogenous wireless sensor networks. Journal of Control Theory and Applications, 9(1), 133–139.
Ye, M., Li, C., Chen, GH., & Wu, J. (2005). EECS: An energy efficient clustering scheme in wireless sensor networks. In 24th IEEE international performance, computing, and communication conference, 2005 (pp. 535–540). IPCCC.
Jun, Y., Weiming, Z., Weidong, X., Daquan, T., & Jiuyang, T. (2012). Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks. Procedia Engineering, 29, 2009–2015.
Li, C., Ye, M., Chen, G., & Wu, J. (2005). An energy-efficient unequal clustering mechanism for Wireless sensor network. In IEEE international conference on mobile adhoc and sensor systems conference (pp. 596–640).
Song, M., Chenglin, Z., Zheng, Z., & Yabin, Y. (2012). An improved fuzzy unequal clustering algorithm for wireless sensor network. Mobile Network Application Journal, LLC, 2012, 206–214.
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.
Zhu, Y. H., Wu, W. D., Pan, J., & Tang, Y. P. (2010). An energy efficient data gathering algorithm to prolong lifetime of wireless sensor networks. Computer Communications, 33, 636–647.
http://math.rice.edu/lanius/fractals/ visited on December 27th 2014.
Mitton, N. (2006). Auto-organisation des rseaux sans fil multi-sauts grande chelle. Ph.D., INSA Lyon.
Felber, P., Ross, K., Biersack, E., Garces-Erice, L., & Urvoy-Keller, G. (2005). Self-organization in spontaneous networks: The approach of dht-based routing protocols. Ad Hoc Networks Journal, 3(5), 589–606.
Garces-Erice, L., Felber, P. A., Biersack, E. W., & Urvoy-Keller, G. (2004). Data indexing in peer-to-peer DHT networks. In: The proceedings of the IEEE 24th international conference on distributed computing systems, Tokyo, Japan.
Li, N., Hou, J. C., & Sha, L. (2003). Design and analysis of an MST-based topology control algorithm. In: INFOCOM, San Fransisco, USA 17021712.
Makhoul, A. (2008). Rseaux de capteurs : localisation, couverture et fusion de donnes. Ph.D., Universit de Franche-Comt, Besanon.
Koushanfar, F., Potkonjak, M., & Sangiovanni-Vincentelli, M. (2002). Fault tolerance in wireless ad hoc sensor networks. In: Proceedings of IEEE Sensors 2002.
Paradis, L., & Han, Q. (2007). A survey of fault management in wireless sensor networks. New York: Plenum Press.
Yu, Z., & YuanliCai, Y. (2008). Design of an energy-efcient distributed multi-level clustering algorithm for wireless sensor networks. In: The proceedings of IEEE 4th international conference: wireless communications, networking and mobile computing (WiCOM08).
Bsoul, M., Al Khasawneh, A., Abdallah, A., Abdallah, E., & Obeidat, I. (2013). An energy-efficient threshold-based clustering protocol for wireless sensor network. Wireless Personal Communications, 70, 99–112.
Handy, M., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In IEEE MWCN, Citeseer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guiloufi, A.B.F., Nasri, N. & Kachouri, A. An Energy-Efficient Unequal Clustering Algorithm Using ‘Sierpinski Triangle’ for WSNs. Wireless Pers Commun 88, 449–465 (2016). https://doi.org/10.1007/s11277-015-3137-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-015-3137-0