Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Experimental Results for an Indoor Localization Method based on Angle-Delay Signatures

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We present experimental results for a location estimation method, evaluated in a static, non-line-of-sight indoor environment at 6.25 GHz, using an array antenna to locate single-antenna remote terminals. Two metrics, both based on the absolute value of the angle-delay signature, are compared, in terms of the rate of correct room detection and the average excess distance error in meters. The performance is also examined as a function of bandwidth, number of antennas, and frequency sampling interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pattan, B. (2000). Robust modulation methods and smart antennas in wireless communications. Upper Saddle River: Prentice Hall PTR.

    Google Scholar 

  2. Swangmuang, N., & Krishnamurthy, P. (2008). An effective location fingerprint model for wireless indoor localization. Pervasive and Mobile Computing, 4, 836–850.

    Article  Google Scholar 

  3. Fang, S., & Lin, T. (2009). Accurate WLAN indoor localization based on RSS, fluctuations modeling. IEEE international symposium on intelligent signal processing, 2009. WISP 2009, Budapest.

  4. Kotanen, A., et al. (2003). Positioning with IEEE 802.11b wireless LAN. IEEE Proceedings PIMRC, 3, 2218–2222.

    Google Scholar 

  5. Ladd, A. M., et al. (2004). On the feasibility of using wireless ethernet for indoor localization. IEEE Transactions on Robotics and Automation, 20(3), 555–559.

    Article  Google Scholar 

  6. Vossiek, M., et al. (2003). Wireless local positioning. IEEE Microwave Magazine, 4(4), 77–86.

    Article  Google Scholar 

  7. Junhui, Zhao, Ran, Rong, Chang-Heon, Oh, & Seo, Jeongwook. (2014). Analysis of the effect of coherence bandwidth on leakage suppression methods for OFDM channel estimation. JICCE, 12(4), 221–227.

    Google Scholar 

  8. Chang, J. M., et al. (2010). Multipath design for 6LoWPAN ad hoc on-demand distance vector routing. IJITCC, 1(1), 4–23.

    Article  Google Scholar 

  9. Kang, J., Lee, Y., Kim, J., & Kim, E. (2014). ARP modification for prevention of IP spoofing. JICCE, 12(3), 154–160.

    Google Scholar 

  10. Liang, W. Y., et al. (2010). An energy conservation DVFS algorithm for the android operating system. Journal of Convergence, 1(1), 93–100.

    Google Scholar 

  11. Park, P., Yoo, J., & Kim, H. (2012). Modeling and analysis of queuing effect of two-level approach to network localization. ETRI Journal, 34(4), 625–628.

    Article  Google Scholar 

  12. Shin, S. H., Park, C. G., & Choi, S. (2010). New map-matcing algorithm using virtual track for pedestrian dead reckoning. ETRI Journal, 32(6), 891–900.

    Article  Google Scholar 

  13. Li, X., & Pahlavan, K. (2004). Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communication, 3(1), 224–234.

    Article  Google Scholar 

  14. Kim, D. K., & Lee, Y. S. (2015). Time-of-arrival estimation through WLAN physical layer systems. Journal of Supercomputing, 71(6), 1955–1974.

    Article  Google Scholar 

  15. Jian-Guo, W., Mohan, A. S., & Aubrey, T. A. (1996). Angles-of-arrival of multipath signals in indoor environments. IEEE VTC, 1, 155–159.

    Google Scholar 

  16. Onggosanusi, E. N., Sayeed, A. M., & Van Veen, B. D. (2000). Canonical space-time processing for wireless communications. IEEE Transactions on Communication, 48(10), 1669–1680.

    Article  Google Scholar 

  17. Spencer, Q. H., et al. (2000). Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications, 18(3), 347–360.

    Article  Google Scholar 

  18. Saleh, A. A. M., & Valenzuela, R. A. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5, 128–137.

    Article  Google Scholar 

  19. Laitinen, H., Lahteenmaki, J., & Nordstrom, T. (2001). Database correlation method for GSM location. IEEE VTC, 4, 2504–2508.

    Google Scholar 

  20. Jotten, C. A., et al. (2004). Reduced complexity signature based mobile terminal location relyingon the knowledge of directional channel impulse responses. IEEE VTC, 5, 3550–3554.

    Google Scholar 

  21. Meurer, M., et. al. (2005). Signature based localization using multi antennas and space-time sub-space matching. ITG/IEEE workshop on smart antennas.

  22. Nezafat, M., Kaveh, M., Tsuji, H., & Fukagawa, T. (2004). Localization of wireless terminals using subspace matching with ray-tracing-based simulations. In Proceedings of sensor array and multichannel signal process workshop, Barcelona, Spain.

  23. Lim, C., Ng, B. P., & Da, D. (2008). Robust methods for AOA geo-location in a real-time indoor WiFi system. Presented at J. location based services, pp. 112–121.

  24. Wong, C., Messier, G., & Klukas, R. (2007). Evaluating measurement-based AOA indoor location using WLAN infrastructure. In Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2007), Fort Worth, TX, pp. 1139–1145, September 2007.

  25. Vanderveen, M. C., Papadias, C. B., & Paulraj, A. (1997). Joint angle and delay estimation (JADE)for multipath signals arriving at an antenna array. IEEE Communication Letters, 1(1), 12–14.

    Article  Google Scholar 

  26. Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7), 984–995.

    Article  MATH  Google Scholar 

  27. Santini, S., & Jain, R. (1999). Similarity measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9), 871–883.

    Article  Google Scholar 

  28. Lewis, J. P. (1995). Fast template matching. Vision interface (pp. 120–123). (An update of this paper Fast normalized cross-correlation is available [Online] http://www.idiom.com/zilla/Work/nvisionInterface/).

  29. Jiang, J. S., & Ingram, M. A. (2002). Enhancing measured MIMO capacity by adapting the locations of the antenna elements. IEEE Personal, Indoor, and Mobile Radio Communication, 3, 1027–1031.

    Article  Google Scholar 

  30. Xiong, J., & Jamieson, K. (2013). Arraytrack: A fine-grained indoor location system. 10th NSENIX symposium on NSDI, pp. 71–84.

Download references

Acknowledgments

This work was supported by MKE (Beam Forming Control Technology for Complex Array Antenna of Wireless Backhaul System).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.K., Kang, D.W. & Lee, Y.S. Experimental Results for an Indoor Localization Method based on Angle-Delay Signatures. Wireless Pers Commun 93, 337–347 (2017). https://doi.org/10.1007/s11277-015-3148-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3148-x

Keywords